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Those labours which belong to the various branches of the mathematical sciences, although
on first consideration they seem to be the exclusive province of intellect, may, nevertheless,
be divided into two distinct sections; one of which may be called the mechanical, because
it is subjected to precise and invariable laws, that are capable of being expressed by means
of the operations of matter; while the other, demanding the intervention of reasoning,
belongs more specially to the domain of the understanding. This admitted, we may propose
to execute, by means of machinery, the mechanical branch of these labours, reserving for
pure intellect that which depends on the reasoning faculties. Thus the rigid exactness of
those laws which regulate numerical calculations must frequently have suggested the
employment of material instruments, either for executing the whole of such calculations or
for abridging them; and thence have arisen several inventions having this object in view,
but which have in general but partially attained it. For instance, the much-admired machine
of Pascal is now simply an object of curiosity, which, whilst it displays the powerful
intellect of its inventor, is yet of little utility in itself. Its powers extended no further than
the execution of the first four operations of arithmetic, and indeed were in reality confined
to that of the first two, since multiplication and division were the result of a series of
additions and subtractions. The chief drawback hitherto on most of such machines is, that
they require the continual intervention of a human agent to regulate their movements, and
thence arises a source of errors; so that, if their use has not become general for large
numerical calculations, it is because they have not in fact resolved the double problem
which the question presents, that of correctness in the results, united with economy of time.

Struck with similar reflections, Mr. Babbage has devoted some years to the realization of a
gigantic idea. He proposed to himself nothing less than the construction of a machine
capable of executing not merely arithmetical calculations, but even all those of analysis, if
their laws are known. The imagination is at first astounded at the idea of such an
undertaking; but the more calm reflection we bestow on it, the less impossible does success
appear, and it is felt that it may depend on the discovery of some principle so general, that,
if applied to machinery, the latter may be capable of mechanically translating the
operations which may be indicated to it by algebraical notation. The illustrious inventor
having been kind enough to communicate to me some of his views on this subject during a
visit he made at Turin, I have, with his approbation, thrown together the impressions they
have left on my mind. But the reader must not expect to find a description of Mr. Babbage's
engine; the comprehension of this would entail studies of much length; and I shall
endeavour merely to give an insight into the end proposed, and to develop the principles on
which its attainment depends.
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I must first premise that this engine is entirely different from that of which there is a notice
in the ‘Treatise on the Economy of Machinery,’ by the same author. But as the latter gave
rise to the idea of the engine in question, I consider it will be a useful preliminary briefly to
recall what were Mr. Babbage's first essays, and also the circumstances in which they
originated.

It is well known that the French government, wishing to promote the extension of the
decimal system, had ordered the construction of logarithmical and trigonometrical tables of
enormous extent. M. de Prony, who had been entrusted with the direction of this
undertaking, divided it into three sections, to each of which was appointed a special class
of persons. In the first section the formulæ were so combined as to render them subservient
to the purposes of numerical calculation; in the second, these same formulæ were
calculated for values of the variable, selected at certain successive distances; and under the
third section, comprising about eighty individuals, who were most of them only acquainted
with the first two rules of arithmetic, the values which were intermediate to those
calculated by the second section were interpolated by means of simple additions and
subtractions.

An undertaking similar to that just mentioned having been entered upon in England, Mr.
Babbage conceived that the operations performed under the third section might be executed
by a machine; and this idea he realized by means of mechanism, which has been in part put
together, and to which the name Difference Engine is applicable, on account of the
principle upon which its construction is founded. To give some notion of this, it will suffice
to consider the series of whole square numbers, 1, 4, 9, 16, 25, 36, 49, 64, &c. By
subtracting each of these from the succeeding one, we obtain a new series, which we will
name the Series of First Differences, consisting of the numbers 3, 5, 7, 9, 11, 13, 15, &c.
On subtracting from each of these the preceding one, we obtain the Second Differences,
which are all constant and equal to 2. We may represent this succession of operations, and
their results, in the following table.

From the mode in which the last two columns B and C have been formed, it is easy to see,
that if, for instance, we desire to pass from the number 5 to the succeeding one 7, we must
add to the former the constant difference 2; similarly, if from the square number 9 we
would pass to the following one 16, we must add to the former the difference 7, which
difference is in other words the preceding difference 5, plus the constant difference 2; or
again, which comes to the same thing, to obtain 16 we have only to add together the three
numbers 2, 5, 9, placed obliquely in the direction ab. Similarly, we obtain the number 25
by summing up the three numbers placed in the oblique direction dc: commencing by the
addition 2+7, we have the first difference 9 consecutively to 7; adding 16 to the 9 we have
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the square 25. We see then that the three numbers 2, 5, 9 being given, the whole series of
successive square numbers, and that of their first differences likewise may be obtained by
means of simple additions.

Now, to conceive how these operations may be reproduced by a machine, suppose the latter
to have three dials, designated as A, B, C, on each of which are traced, say a thousand
divisions, by way of example, over which a needle shall pass. The two dials, C, B, shall
have in addition a registering hammer, which is to give a number of strokes equal to that of
the divisions indicated by the needle. For each stroke of the registering hammer of the dial
C, the needle B shall advance one division; similarly, the needle A shall advance one
division for every stroke of the registering hammer of the dial B. Such is the general
disposition of the mechanism.

This being understood, let us, at the beginning of the series of operations we wish to
execute, place the needle C on the division 2, the needle B on the division 5, and the needle
A on the division 9. Let us allow the hammer of the dial C to strike; it will strike twice, and
at the same time the needle B will pass over two divisions. The latter will then indicate the
number 7, which succeeds the number 5 in the column of first differences. If we now
permit the hammer of the dial B to strike in its turn, it will strike seven times, during which
the needle A will advance seven divisions; these added to the nine already marked by it
will give the number 16, which is the square number consecutive to 9. If we now
recommence these operations, beginning with the needle C, which is always to be left on
the division 2, we shall perceive that by repeating them indefinitely, we may successively
reproduce the series of whole square numbers by means of a very simple mechanism.

The theorem on which is based the construction of the machine we have just been
describing, is a particular case of the following more general theorem: that if in any
polynomial whatever, the highest power of whose variable is m, this same variable be
increased by equal degrees; the corresponding values of the polynomial then calculated,
and the first, second, third, &c. differences of these be taken (as for the preceding series of
squares); the mth differences will all be equal to each other. So that, in order to reproduce
the series of values of the polynomial by means of a machine analogous to the one above
described, it is sufficient that there be (m+1) dials, having the mutual relations we have
indicated. As the differences may be either positive or negative, the machine will have a
contrivance for either advancing or retrograding each needle, according as the number to
be algebraically added may have the sign plus or minus.

If from a polynomial we pass to a series having an infinite number of terms, arranged
according to the ascending powers of the variable, it would at first appear, that in order to
apply the machine to the calculation of the function represented by such a series, the
mechanism must include an infinite number of dials, which would in fact render the thing
impossible. But in many cases the difficulty will disappear, if we observe that for a great
number of functions the series which represent them may be rendered convergent; so that,
according to the degree of approximation desired, we may limit ourselves to the calculation
of a certain number of terms of the series, neglecting the rest. By this method the question
is reduced to the primitive case of a finite polynomial. It is thus that we can calculate the
succession of the logarithms of numbers. But since, in this particular instance, the terms
which had been originally neglected receive increments in a ratio so continually increasing
for equal increments of the variable, that the degree of approximation required would
ultimately be affected, it is necessary, at certain intervals, to calculate the value of the
function by different methods, and then respectively to use the results thus obtained, as data
whence to deduce, by means of the machine, the other intermediate values. We see that the
machine here performs the office of the third section of calculators mentioned in describing
the tables computed by order of the French government, and that the end originally
proposed is thus fulfilled by it.



Such is the nature of the first machine which Mr. Babbage conceived. We see that its use is
confined to cases where the numbers required are such as can be obtained by means of
simple additions or subtractions; that the machine is, so to speak, merely the expression of
one particular theorem of analysis; and that, in short, its operations cannot be extended so
as to embrace the solution of an infinity of other questions included within the domain of
mathematical analysis. It was while contemplating the vast field which yet remained to be
traversed, that Mr. Babbage, renouncing his original essays, conceived the plan of another
system of mechanism whose operations should themselves possess all the generality of
algebraical notation, and which, on this account, he denominates the Analytical Engine.

Having now explained the state of the question, it is time for me to develop the principle on
which is based the construction of this latter machine. When analysis is employed for the
solution of any problem, there are usually two classes of operations to execute: first, the
numerical calculation of the various coefficients; and secondly, their distribution in relation
to the quantities affected by them. If, for example, we have to obtain the product of two
binomials (a+bx) (m+nx), the result will be represented by am + (an + bm) x + bnx2, in
which expression we must first calculate am, an, bm, bn; then take the sum of an + bm; and
lastly, respectively distribute the coefficients thus obtained amongst the powers of the
variable. In order to reproduce these operations by means of a machine, the latter must
therefore possess two distinct sets of powers: first, that of executing numerical calculations;
secondly, that of rightly distributing the values so obtained.

But if human intervention were necessary for directing each of these partial operations,
nothing would be gained under the heads of correctness and economy of time; the machine
must therefore have the additional requisite of executing by itself all the successive
operations required for the solution of a problem proposed to it, when once the primitive
numerical data for this same problem have been introduced. Therefore, since, from the
moment that the nature of the calculation to be executed or of the problem to be resolved
have been indicated to it, the machine is, by its own intrinsic power, of itself to go through
all the intermediate operations which lead to the proposed result, it must exclude all
methods of trial and guess-work, and can only admit the direct processes of calculation.

It is necessarily thus; for the machine is not a thinking being, but simply an automaton
which acts according to the laws imposed upon it. This being fundamental, one of the
earliest researches its author had to undertake, was that of finding means for effecting the
division of one number by another without using the method of guessing indicated by the
usual rules of arithmetic. The difficulties of effecting this combination were far from being
among the least; but upon it depended the success of every other. Under the impossibility
of my here explaining the process through which this end is attained, we must limit
ourselves to admitting that the first four operations of arithmetic, that is addition,
subtraction, multiplication and division, can be performed in a direct manner through the
intervention of the machine. This granted, the machine is thence capable of performing
every species of numerical calculation, for all such calculations ultimately resolve
themselves into the four operations we have just named. To conceive how the machine can
now go through its functions according to the laws laid down, we will begin by giving an
idea of the manner in which it materially represents numbers.

Let us conceive a pile or vertical column consisting of an indefinite number of circular
discs, all pierced through their centres by a common axis, around which each of them can
take an independent rotatory movement. If round the edge of each of these discs are written
the ten figures which constitute our numerical alphabet, we may then, by arranging a series
of these figures in the same vertical line, express in this manner any number whatever. It is
sufficient for this purpose that the first disc represent units, the second tens, the third
hundreds, and so on. When two numbers have been thus written on two distinct columns,
we may propose to combine them arithmetically with each other, and to obtain the result on
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a third column. In general, if we have a series of columns consisting of discs, which
columns we will designate as V0, V1, V2, V3, V4, &c., we may require, for instance, to
divide the number written on the column V1 by that on the column V4, and to obtain the
result on the column V7. To effect this operation, we must impart to the machine two
distinct arrangements; through the first it is prepared for executing a division, and through
the second the columns it is to operate on are indicated to it, and also the column on which
the result is to be represented. If this division is to be followed, for example, by the
addition of two numbers taken on other columns, the two original arrangements of the
machine must be simultaneously altered. If, on the contrary, a series of operations of the
same nature is to be gone through, then the first of the original arrangements will remain,
and the second alone must be altered Therefore, the arrangements that may be
communicated to the various parts of the machine may be distinguished into two principal
classes:

First, that relative to the Operations.
Secondly, that relative to the Variables.

By this latter we mean that which indicates the columns to be operated on. As for the
operations themselves, they are executed by a special apparatus, which is designated by the
name of mill, and which itself contains a certain number of columns, similar to those of the
Variables. When two numbers are to be combined together, the machine commences by
effacing them from the columns where they are written, that is, it places zero on every disc
of the two vertical lines on which the numbers were represented; and it transfers the
numbers to the mill. There, the apparatus having been disposed suitably for the required
operation, this latter is effected, and, when completed, the result itself is transferred to the
column of Variables which shall have been indicated. Thus the mill is that portion of the
machine which works, and the columns of Variables constitute that where the results are
represented and arranged. After the preceding explanations, we may perceive that all
fractional and irrational results will be represented in decimal fractions. Supposing each
column to have forty discs, this extension will be sufficient for all degrees of
approximation generally required.

It will now be inquired how the machine can of itself, and without having recourse to the
hand of man, assume the successive dispositions suited to the operations. The solution of
this problem has been taken from Jacquard's apparatus, used for the manufacture of
brocaded stuffs, in the following manner:—

Two species of threads are usually distinguished in woven stuffs; one is the warp or
longitudinal thread, the other the woof or transverse thread, which is conveyed by the
instrument called the shuttle, and which crosses the longitudinal thread or warp. When a
brocaded stuff is required, it is necessary in turn to prevent certain threads from crossing
the woof, and this according to a succession which is determined by the nature of the
design that is to be reproduced. Formerly this process was lengthy and difficult, and it was
requisite that the workman, by attending to the design which he was to copy, should
himself regulate the movements the threads were to take. Thence arose the high price of
this description of stuffs, especially if threads of various colours entered into the fabric. To
simplify this manufacture, Jacquard devised the plan of connecting each group of threads
that were to act together, with a distinct lever belonging exclusively to that group. All these
levers terminate in rods, which are united together in one bundle, having usually the form
of a parallelopiped with a rectangular base. The rods are cylindrical, and are separated from
each other by small intervals. The process of raising the threads is thus resolved into that of
moving these various lever-arms in the requisite order. To effect this, a rectangular sheet of
pasteboard is taken, somewhat larger in size than a section of the bundle of lever-arms. If
this sheet be applied to the base of the bundle, and an advancing motion be then
communicated to the pasteboard, this latter will move with it all the rods of the bundle, and

https://www.fourmilab.ch/babbage/sketch_foot.html#note4


consequently the threads that are connected with each of them. But if the pasteboard,
instead of being plain, were pierced with holes corresponding to the extremities of the
levers which meet it, then, since each of the levers would pass through the pasteboard
during the motion of the latter, they would all remain in their places. We thus see that it is
easy so to determine the position of the holes in the pasteboard, that, at any given moment,
there shall be a certain number of levers, and consequently of parcels of threads, raised,
while the rest remain where they were. Supposing this process is successively repeated
according to a law indicated by the pattern to be executed, we perceive that this pattern
may be reproduced on the stuff. For this purpose we need merely compose a series of cards
according to the law required, and arrange them in suitable order one after the other; then,
by causing them to pass over a polygonal beam which is so connected as to turn a new face
for every stroke of the shuttle, which face shall then be impelled parallelly to itself against
the bundle of lever-arms, the operation of raising the threads will be regularly performed.
Thus we see that brocaded tissues may be manufactured with a precision and rapidity
formerly difficult to obtain.

Arrangements analogous to those just described have been introduced into the Analytical
Engine. It contains two principal species of cards: first, Operation cards, by means of which
the parts of the machine are so disposed as to execute any determinate series of operations,
such as additions, subtractions, multiplications, and divisions; secondly, cards of the
Variables, which indicate to the machine the columns on which the results are to be
represented. The cards, when put in motion, successively arrange the various portions of
the machine according to the nature of the processes that are to be effected, and the
machine at the same time executes these processes by means of the various pieces of
mechanism of which it is constituted.

In order more perfectly to conceive the thing, let us select as an example the resolution of
two equations of the first degree with two unknown quantities. Let the following be the two
equations, in which x and y are the unknown quantities:—

We deduce , and for y an analogous expression. Let us continue to

represent by V0, V1, V2, &c. the different columns which contain the numbers, and let us
suppose that the first eight columns have been chosen for expressing on them the numbers
represented by m, n, d, m', n', d', n and n', which implies that V0=m, V1=n, V2=d, V3=m',
V4=n', V5=d', V6=n, V7=n'.

The series of operations commanded by the cards, and the results obtained, may be
represented in the following table:—



Since the cards do nothing but indicate in what manner and on what columns the machine
shall act, it is clear that we must still, in every particular case, introduce the numerical data
for the calculation. Thus, in the example we have selected, we must previously inscribe the
numerical values of m, n, d, m', n', d', in the order and on the columns indicated, after
which the machine when put in action will give the value of the unknown quantity x for
this particular case. To obtain the value of y, another series of operations analogous to the
preceding must be performed. But we see that they will be only four in number, since the
denominator of the expression for y, excepting the sign, is the same as that for x, and equal
to n'm-nm'. In the preceding table it will be remarked that the column for operations
indicates four successive multiplications, two subtractions, and one division. Therefore, if
desired, we need only use three operation-cards; to manage which, it is sufficient to
introduce into the machine an apparatus which shall, after the first multiplication, for
instance, retain the card which relates to this operation, and not allow it to advance so as to
be replaced by another one, until after this same operation shall have been four times
repeated. In the preceding example we have seen, that to find the value of x we must begin
by writing the coefficients m, n, d, m', n', d', upon eight columns, thus repeating n and n'
twice. According to the same method, if it were required to calculate y likewise, these
coefficients must be written on twelve different columns. But it is possible to simplify this
process, and thus to diminish the chances of errors, which chances are greater, the larger
the number of the quantities that have to be inscribed previous to setting the machine in
action. To understand this simplification, we must remember that every number written on
a column must, in order to be arithmetically combined with another number, be effaced
from the column on which it is, and transferred to the mill. Thus, in the example we have
discussed, we will take the two coefficients m and n', which are each of them to enter into
two different products, that is m into mn' and md', n' into mn' and n'd. These coefficients
will be inscribed on the columns V0 and V4. If we commence the series of operations by
the product of m into n', these numbers will be effaced from the columns V0 and V4, that
they may be transferred to the mill, which will multiply them into each other, and will then
command the machine to represent the result, say on the column V6. But as these numbers
are each to be used again in another operation, they must again be inscribed somewhere;
therefore, while the mill is working out their product, the machine will inscribe them anew
on any two columns that may be indicated to it through the cards; and as, in the actual case,
there is no reason why they should not resume their former places, we will suppose them
again inscribed on V0 and V4, whence in short they would not finally disappear, to be
reproduced no more, until they should have gone through all the combinations in which
they might have to be used.



We see, then, that the whole assemblage of operations requisite for resolving the two above
equations of the first degree may be definitely represented in the following table:—

Clicking on the table displays a larger image of it. Your browser's “Back” button will return you to this
document.

In order to diminish to the utmost the chances of error in inscribing the numerical data of
the problem, they are successively placed on one of the columns of the mill; then, by
means of cards arranged for this purpose, these same numbers are caused to arrange
themselves on the requisite columns, without the operator having to give his attention to it;
so that his undivided mind may be applied to the simple inscription of these same numbers.

According to what has now been explained, we see that the collection of columns of
Variables may be regarded as a store of numbers, accumulated there by the mill, and which,
obeying the orders transmitted to the machine by means of the cards, pass alternately from
the mill to the store and from the store to the mill, that they may undergo the
transformations demanded by the nature of the calculation to be performed.

Hitherto no mention has been made of the signs in the results, and the machine would be
far from perfect were it incapable of expressing and combining amongst each other positive
and negative quantities. To accomplish this end, there is, above every column, both of the
mill and of the store, a disc, similar to the discs of which the columns themselves consist.
According as the digit on this disc is even or uneven, the number inscribed on the
corresponding column below it will be considered as positive or negative. This granted, we
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may, in the following manner, conceive how the signs can be algebraically combined in the
machine. When a number is to be transferred from the store to the mill, and vice versâ, it
will always be transferred with its sign, which will effected by means of the cards, as has
been explained in what precedes. Let any two numbers then, on which we are to operate
arithmetically, be placed in the mill with their respective signs. Suppose that we are first to
add them together; the operation-cards will command the addition: if the two numbers be
of the same sign, one of the two will be entirely effaced from where it was inscribed, and
will go to add itself on the column which contains the other number; the machine will,
during this operation, be able, by means of a certain apparatus, to prevent any movement in
the disc of signs which belongs to the column on which the addition is made, and thus the
result will remain with the sign which the two given numbers originally had. When two
numbers have two different signs, the addition commanded by the card will be changed
into a subtraction through the intervention of mechanisms which are brought into play by
this very difference of sign. Since the subtraction can only be effected on the larger of the
two numbers, it must be arranged that the disc of signs of the larger number shall not move
while the smaller of the two numbers is being effaced from its column and subtracted from
the other, whence the result will have the sign of this latter, just as in fact it ought to be.
The combinations to which algebraical subtraction give rise, are analogous to the
preceding. Let us pass on to multiplication. When two numbers to be multiplied are of the
same sign, the result is positive; if the signs are different, the product must be negative. In
order that the machine may act conformably to this law, we have but to conceive that on the
column containing the product of the two given numbers, the digit which indicates the sign
of that product has been formed by the mutual addition of the two digits that respectively
indicated the signs of the two given numbers; it is then obvious that if the digits of the
signs are both even, or both odd, their sum will be an even number, and consequently will
express a positive number; but that if, on the contrary, the two digits of the signs are one
even and the other odd, their sum will be an odd number, and will consequently express a
negative number. In the case of division. instead of adding the digits of the discs, they must
be subtracted one from the other, which will produce results analogous to the preceding;
that is to say, that if these figures are both even or both uneven, the remainder of this
subtraction will be even; and it will be uneven in the contrary case. When I speak of
mutually adding or subtracting the numbers expressed by the digits of the signs, I merely
mean that one of the sign-discs is made to advance or retrograde a number of divisions
equal to that which is expressed by the digit on the other sign-disc. We see, then, from the
preceding explanation, that it is possible mechanically to combine the signs of quantities so
as to obtain results conformable to those indicated by algebra.

The machine is not only capable of executing those numerical calculations which depend
on a given algebraical formula, but it is also fitted for analytical calculations in which there
are one or several variables to be considered. It must be assumed that the analytical
expression to be operated on can be developed according to powers of the variable, or
according to determinate functions of this same variable, such as circular functions, for
instance; and similarly for the result that is to be attained. If we then suppose that above the
columns of the store, we have inscribed the powers or the functions of the variable,
arranged according to whatever is the prescribed law of development, the coefficients of
these several terms may be respectively placed on the corresponding column below each.
In this manner we shall have a representation of an analytical development; and, supposing
the position of the several terms composing it to be invariable, the problem will be reduced
to that of calculating their coefficients according to the laws demanded by the nature of the
question. In order to make this more clear, we shall take the following very simple
example, in which we are to multiply (a + bx1) by (A + B cos1  x). We shall begin by
writing x0 , x1, cos0 x, cos1 x, above the columns V0, V1, V2, V3; then since, from the form
of the two functions to be combined, the terms which are to compose the products will be
of the following nature, x0·cos0 x, x0·cos1 x, x1·cos0 x, x1·cos1 x, these will be inscribed
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above the columns V4, V5, V6, V7. The coefficients of x0, x1, cos0 x, cos1 x being given,
they will, by means of the mill, be passed to the columns V0, V1, V2 and V3. Such are the
primitive data of the problem. It is now the business of the machine to work out its
solution, that is, to find the coefficients which are to be inscribed on V4, V5, V6, V7. To
attain this object, the law of formation of these same coefficients being known, the machine
will act through the intervention of the cards, in the manner indicated by the following
table:—

Clicking on the table displays a larger image of it. Your browser's “Back” button will return you to this document.
Read footnote in diagram.

It will now be perceived that a general application may be made of the principle developed
in the preceding example, to every species of process which it may be proposed to effect on
series submitted to calculation. It is sufficient that the law of formation of the coefficients
be known, and that this law be inscribed on the cards of the machine, which will then of
itself execute all the calculations requisite for arriving at the proposed result. If, for
instance, a recurring series were proposed, the law of formation of the coefficients being
here uniform, the same operations which must be performed for one of them will be
repeated for all the others; there will merely be a change in the locality of the operation,
that is, it will be performed with different columns. Generally, since every analytical
expression is susceptible of being expressed in a series ordered according to certain
functions of the variable, we perceive that the machine will include all analytical
calculations which can be definitively reduced to the formation of coefficients according to
certain laws, and to the distribution of these with respect to the variables.

We may deduce the following important consequence from these explanations, viz. that
since the cards only indicate the nature of the operations to be performed, and the columns
of Variables with which they are to be executed, these cards will themselves possess all the
generality of analysis, of which they are in fact merely a translation. We shall now further
examine some of the difficulties which the machine must surmount, if its assimilation to
analysis is to be complete. There are certain functions which necessarily change in nature
when they pass through zero or infinity, or whose values cannot be admitted when they
pass these limits. When such cases present themselves, the machine is able, by means of a
bell, to give notice that the passage through zero or infinity is taking place, and it then stops
until the attendant has again set it in action for whatever process it may next be desired that
it shall perform. If this process has been foreseen, then the machine, instead of ringing, will
so dispose itself as to present the new cards which have relation to the operation that is to
succeed the passage through zero and infinity. These new cards may follow the first, but
may only come into play contingently upon one or other of the two circumstances just
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mentioned taking place.

Let us consider a term of the form abn; since the cards are but a translation of the analytical
formula, their number in this particular case must be the same, whatever be the value of n;
that is to say, whatever be the number of multiplications required for elevating b to the nth
power (we are supposing for the moment that n is a whole number). Now, since the
exponent n indicates that b is to be multiplied n times by itself, and all these operations are
of the same nature, it will be sufficient to employ one single operation-card, viz. that which
orders the multiplication.

But when n is given for the particular case to be calculated, it will be further requisite that
the machine limit the number of its multiplications according to the given values. The
process may be thus arranged. The three numbers a, b and n will be written on as many
distinct columns of the store; we shall designate them V0, V1, V2; the result abn will place
itself on the column V3. When the number n has been introduced into the machine, a card
will order a certain registering-apparatus to mark (n-1), and will at the same time execute
the multiplication of b by b. When this is completed, it will be found that the registering-
apparatus has effaced a unit, and that it only marks (n−2); while the machine will now
again order the number b written on the column V1 to multiply itself with the product b2

written on the column V3, which will give b3. Another unit is then effaced from the
registering-apparatus, and the same processes are continually repeated until it only marks
zero. Thus the number bn will be found inscribed on V3, when the machine, pursuing its
course of operations, will order the product of bn by a; and the required calculation will
have been completed without there being any necessity that the number of operation-cards
used should vary with the value of n. If n were negative, the cards, instead of ordering the
multiplication of a by bn, would order its division; this we can easily conceive, since every
number, being inscribed with its respective sign, is consequently capable of reacting on the
nature of the operations to be executed. Finally, if n were fractional, of the form p/q, an
additional column would be used for the inscription of q, and the machine would bring into
action two sets of processes, one for raising b to the power p, the other for extracting the
qth root of the number so obtained.

Again, it may be required, for example, to multiply an expression of the form axm+bxn by
another Axp+Bxq, and then to reduce the product to the least number of terms, if any of the
indices are equal. The two factors being ordered with respect to x, the general result of the
multiplication would be Aaxm+p+Abxn+p+Baxm+q+Bbxn+q. Up to this point the process
presents no difficulties; but suppose that we have m=p and n=q, and that we wish to reduce
the two middle terms to a single one (Ab+Ba)xm+q. For this purpose, the cards may order
m+q and n+p to be transferred into the mill, and there subtracted one from the other; if the
remainder is nothing, as would be the case on the present hypothesis, the mill will order
other cards to bring to it the coefficients Ab and Ba, that it may add them together and give
them in this state as a coefficient for the single term xn+p=xm+q.

This example illustrates how the cards are able to reproduce all the operations which
intellect performs in order to attain a determinate result, if these operations are themselves
capable of being precisely defined.

Let us now examine the following expression:—

which we know becomes equal to the ratio of the circumference to the diameter, when n is
infinite. We may require the machine not only to perform the calculation of this fractional
expression, but further to give indication as soon as the value becomes identical with that
of the ratio of the circumference to the diameter when n is infinite, a case in which the



computation would be impossible. Observe that we should thus require of the machine to
interpret a result not of itself evident, and that this is not amongst its attributes, since it is
no thinking being. Nevertheless, when the cos of n=1/0 has been foreseen, a card may
immediately order the substitution of the value of π (π being the ratio of the circumference
to the diameter), without going through the series of calculations indicated. This would
merely require that the machine contain a special card, whose office it should be to place
the number π in a direct and independent manner on the column indicated to it. And here
we should introduce the mention of a third species of cards, which may be called cards of
numbers. There are certain numbers, such as those expressing the ratio of the
circumference to the diameter, the Numbers of Bernoulli, &c., which frequently present
themselves in calculations. To avoid the necessity for computing them every time they have
to be used, certain cards may be combined specially in order to give these numbers ready
made into the mill, whence they afterwards go and place themselves on those columns of
the store that are destined for them. Through this means the machine will be susceptible of
those simplifications afforded by the use of numerical tables. It would be equally possible
to introduce, by means of these cards, the logarithms of numbers; but perhaps it might not
be in this case either the shortest or the most appropriate method; for the machine might be
able to perform the same calculations by other more expeditious combinations, founded on
the rapidity with which it executes the first four operations of arithmetic. To give an idea of
this rapidity, we need only mention that Mr. Babbage believes he can, by his engine, form
the product of two numbers, each containing twenty figures, in three minutes.

Perhaps the immense number of cards required for the solution of any rather complicated
problem may appear to be an obstacle; but this does not seem to be the case. There is no
limit to the number of cards that can be used. Certain stuffs require for their fabrication not
less than twenty thousand cards, and we may unquestionably far exceed even this quantity.

Resuming what we have explained concerning the Analytical Engine, we may conclude
that it is based on two principles: the first consisting in the fact that every arithmetical
calculation ultimately depends on four principal operations—addition, subtraction,
multiplication, and division; the second, in the possibility of reducing every analytical
calculation to that of the coefficients for the several terms of a series. If this last principle
be true, all the operations of analysis come within the domain of the engine. To take
another point of view: the use of the cards offers a generality equal to that of algebraical
formulæ, since such a formula simply indicates the nature and order of the operations
requisite for arriving at a certain definite result, and similarly the cards merely command
the engine to perform these same operations; but in order that the mechanisms may be able
to act to any purpose, the numerical data of the problem must in every particular case be
introduced. Thus the same series of cards will serve for all questions whose sameness of
nature is such as to require nothing altered excepting the numerical data. In this light the
cards are merely a translation of algebraical formulæ, or, to express it better, another form
of analytical notation.

Since the engine has a mode of acting peculiar to itself, it will in every particular case be
necessary to arrange the series of calculations conformably to the means which the
machine possesses; for such or such a process which might be very easy for a calculator
may be long and complicated for the engine, and vice versâ.

Considered under the most general point of view, the essential object of the machine being
to calculate, according to the laws dictated to it, the values of numerical coefficients which
it is then to distribute appropriately on the columns which represent the variables, it follows
that the interpretation of formulæ and of results is beyond its province, unless indeed this
very interpretation be itself susceptible of expression by means of the symbols which the
machine employs. Thus, although it is not itself the being that reflects, it may yet be
considered as the being which executes the conceptions of intelligence. The cards receive



the impress of these conceptions, and transmit to the various trains of mechanism
composing the engine the orders necessary for their action. When once the engine shall
have been constructed, the difficulty will be reduced to the making out of the cards; but as
these are merely the translation of algebraical formulæ, it will, by means of some simple
notations, be easy to consign the execution of them to a workman. Thus the whole
intellectual labour will be limited to the preparation of the formulæ, which must be adapted
for calculation by the engine.

Now, admitting that such an engine can be constructed, it may be inquired: what will be its
utility? To recapitulate; it will afford the following advantages:—First, rigid accuracy. We
know that numerical calculations are generally the stumbling-block to the solution of
problems, since errors easily creep into them, and it is by no means always easy to detect
these errors. Now the engine, by the very nature of its mode of acting, which requires no
human intervention during the course of its operations, presents every species of security
under the head of correctness: besides, it carries with it its own check; for at the end of
every operation it prints off, not only the results, but likewise the numerical data of the
question; so that it is easy to verify whether the question has been correctly proposed.
Secondly, economy of time: to convince ourselves of this, we need only recollect that the
multiplication of two numbers, consisting each of twenty figures, requires at the very
utmost three minutes. Likewise, when a long series of identical computations is to be
performed, such as those required for the formation of numerical tables, the machine can
be brought into play so as to give several results at the same time, which will greatly
abridge the whole amount of the processes. Thirdly, economy of intelligence: a simple
arithmetical computation requires to be performed by a person possessing some capacity;
and when we pass to more complicated calculations, and wish to use algebraical formulæ
in particular cases, knowledge must be possessed which presupposes preliminary
mathematical studies of some extent. Now the engine, from its capability of performing by
itself all these purely material operations, spares intellectual labour, which may be more
profitably employed. Thus the engine may be considered as a real manufactory of figures,
which will lend its aid to those many useful sciences and arts that depend on numbers.
Again, who can foresee the consequences of such an invention? In truth, how many
precious observations remain practically barren for the progress of the sciences, because
there are not powers sufficient for computing the results! And what discouragement does
the perspective of a long and arid computation cast into the mind of a man of genius, who
demands time exclusively for meditation, and who beholds it snatched from him by the
material routine of operations! Yet it is by the laborious route of analysis that he must reach
truth; but he cannot pursue this unless guided by numbers; for without numbers it is not
given us to raise the veil which envelopes the mysteries of nature. Thus the idea of
constructing an apparatus capable of aiding human weakness in such researches, is a
conception which, being realized, would mark a glorious epoch in the history of the
sciences. The plans have been arranged for all the various parts, and for all the wheel-work,
which compose this immense apparatus, and their action studied; but these have not yet
been fully combined together in the drawings and mechanical notation. The confidence
which the genius of Mr. Babbage must inspire, affords legitimate ground for hope that this
enterprise will be crowned with success; and while we render homage to the intelligence
which directs it, let us breathe aspirations for the accomplishment of such an undertaking.

NOTES BY THE
TRANSLATOR

Note A

The particular function whose integral the
Difference Engine was constructed to tabulate, is
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Ada Augusta,
Countess of Lovelace

The purpose which that engine has been specially
intended and adapted to fulfil, is the computation
of nautical and astronomical tables. The integral
of

being uz = a+bx+cx2+dx3+ex4+fx5+gx6,

the constants a, b, c, &c. are represented on the seven columns of discs, of which the
engine consists. It can therefore tabulate accurately and to an unlimited extent, all series
whose general term is comprised in the above formula; and it can also tabulate
approximatively between intervals of greater or less extent, all other series which are
capable of tabulation by the Method of Differences. 

The Analytical Engine, on the contrary, is not merely adapted for tabulating the results of
one particular function and of no other, but for developing and tabulating any function
whatever. In fact the engine may be described as being the material expression of any
indefinite function of any degree of generality and complexity, such as for instance,

F(x, y, z, log x, sin y, x p, &c.),

which is, it will be observed, a function of all other possible functions of any number of
quantities.

In this, which we may call the neutral or zero state of the engine, it is ready to receive at
any moment, by means of cards constituting a portion of its mechanism (and applied on the
principle of those used in the Jacquard-loom), the impress of whatever special function we
may desire to develope or to tabulate. These cards contain within themselves (in a manner
explained in the Memoir itself) the law of development of the particular function that may
be under consideration, and they compel the mechanism to act accordingly in a certain
corresponding order. One of the simplest cases would be for example, to suppose that

F(x, y, z, &c. &c.)

is the particular function

which the Difference Engine tabulates for values of n only up to 7. In this case the cards
would order the mechanism to go through that succession of operations which would



tabulate

uz = a + bx + cx2 + ··· + mxn−1

where n might be any number whatever.

These cards, however, have nothing to do with the regulation of the particular numerical
data. They merely determine the operations to be effected, which operations may of course
be performed on an infinite variety of particular numerical values, and do not bring out any
definite numerical results unless the numerical data of the problem have been impressed on
the requisite portions of the train of mechanism. In the above example, the first essential
step towards an arithmetical result would be the substitution of specific numbers for n, and
for the other primitive quantities which enter into the function.

Again, let us suppose that for F we put two complete equations of the fourth degree
between x and y. We must then express on the cards the law of elimination for such
equations. The engine would follow out those laws, and would ultimately give the equation
of one variable which results from such elimination. Various modes of elimination might be
selected; and of course the cards must be made out accordingly. The following is one mode
that might be adopted. The engine is able to multiply together any two functions of the
form

a + bx + cx2 + ··· + pxn.

This granted, the two equations may be arranged according to the powers of y, and the
coefficients of the powers of y may be arranged according to powers of x. The elimination
of y will result from the successive multiplications and subtractions of several such
functions. In this, and in all other instances, as was explained above, the particular
numerical data and the numerical results are determined by means and by portions of the
mechanism which act quite independently of those that regulate the operations.

In studying the action of the Analytical Engine, we find that the peculiar and independent
nature of the considerations which in all mathematical analysis belong to operations, as
distinguished from the objects operated upon and from the results of the operations
performed upon those objects, is very strikingly defined and separated.

It is well to draw attention to this point, not only because its full appreciation is essential to
the attainment of any very just and adequate general comprehension of the powers and
mode of action of the Analytical Engine, but also because it is one which is perhaps too
little kept in view in the study of mathematical science in general. It is, however,
impossible to confound it with other considerations, either when we trace the manner in
which that engine attains its results, or when we prepare the data for its attainment of those
results. It were much to be desired, that when mathematical processes pass through the
human brain instead of through the medium of inanimate mechanism, it were equally a
necessity of things that the reasonings connected with operations should hold the same just
place as a clear and well-defined branch of the subject of analysis, a fundamental but yet
independent ingredient in the science, which they must do in studying the engine. The
confusion, the difficulties, the contradictions which, in consequence of a want of accurate
distinctions in this particular, have up to even a recent period encumbered mathematics in
all those branches involving the consideration of negative and impossible quantities, will at
once occur to the reader who is at all versed in this science, and would alone suffice to
justify dwelling somewhat on the point, in connexion with any subject so peculiarly fitted
to give forcible illustration of it as the Analytical Engine. It may be desirable to explain,
that by the word operation, we mean any process which alters the mutual relation of two or
more things, be this relation of what kind it may. This is the most general definition, and
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would include all subjects in the universe. In abstract mathematics, of course operations
alter those particular relations which are involved in the considerations of number and
space, and the results of operations are those peculiar results which correspond to the
nature of the subjects of operation. But the science of operations, as derived from
mathematics more especially, is a science of itself, and has its own abstract truth and value;
just as logic has its own peculiar truth and value, independently of the subjects to which we
may apply its reasonings and processes. Those who are accustomed to some of the more
modern views of the above subject, will know that a few fundamental relations being true,
certain other combinations of relations must of necessity follow; combinations unlimited in
variety and extent if the deductions from the primary relations be carried on far enough.
They will also be aware that one main reason why the separate nature of the science of
operations has been little felt, and in general little dwelt on, is the shifting meaning of many
of the symbols used in mathematical notation. First, the symbols of operation are
frequently also the symbols of the results of operations. We may say that these symbols are
apt to have both a retrospective and a prospective signification. They may signify either
relations that are the consequences of a series of processes already performed, or relations
that are yet to be effected through certain processes. Secondly, figures, the symbols of
numerical magnitude, are frequently also the symbols of operations, as when they are the
indices of powers. Wherever terms have a shifting meaning, independent sets of
considerations are liable to become complicated together, and reasonings and results are
frequently falsified. Now in the Analytical Engine, the operations which come under the
first of the above heads are ordered and combined by means of a notation and of a train of
mechanism which belong exclusively to themselves; and with respect to the second head,
whenever numbers meaning operations and not quantities (such as the indices of powers)
are inscribed on any column or set of columns, those columns immediately act in a wholly
separate and independent manner, becoming connected with the operating mechanism
exclusively, and re-acting upon this. They never come into combination with numbers upon
any other columns meaning quantities; though, of course, if there are numbers meaning
operations upon n columns, these may combine amongst each other, and will often be
required to do so, just as numbers meaning quantities combine with each other in any
variety. It might have been arranged that all numbers meaning operations should have
appeared on some separate portion of the engine from that which presents numerical
quantities; but the present mode is in some cases more simple, and offers in reality quite as
much distinctness when understood.

The operating mechanism can even be thrown into action independently of any object to
operate upon (although of course no result could then be developed). Again, it might act
upon other things besides number, were objects found whose mutual fundamental relations
could be expressed by those of the abstract science of operations, and which should be also
susceptible of adaptations to the action of the operating notation and mechanism of the
engine. Supposing, for instance, that the fundamental relations of pitched sounds in the
science of harmony and of musical composition were susceptible of such expression and
adaptations, the engine might compose elaborate and scientific pieces of music of any
degree of complexity or extent.

The Analytical Engine is an embodying of the science of operations, constructed with
peculiar reference to abstract number as the subject of those operations. The Difference
Engine is the embodying of one particular and very limited set of operations, which (see
the notation used in Note B) may be expressed thus (+, +, +, +, +, +), or thus, 6(+). Six
repetitions of the one operation, +, is, in fact, the whole sum and object of that engine. It
has seven columns, and a number on any column can add itself to a number on the next
column to its right-hand. So that, beginning with the column furthest to the left, six
additions can be effected, and the result appears on the seventh column, which is the last on
the right-hand. The operating mechanism of this engine acts in as separate and independent
a manner as that of the Analytical Engine; but being susceptible of only one unvarying and
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restricted combination, it has little force or interest in illustration of the distinct nature of
the science of operations. The importance of regarding the Analytical Engine under this
point of view will, we think, become more and more obvious as the reader proceeds with
M. Menabrea's clear and masterly article. The calculus of operations is likewise in itself a
topic of so much interest, and has of late years been so much more written on and thought
on than formerly, that any bearing which that engine, from its mode of constitution, may
possess upon the illustration of this branch of mathematical science should not be
overlooked. Whether the inventor of this engine had any such views in his mind while
working out the invention, or whether he may subsequently ever have regarded it under this
phase, we do not know; but it is one that forcibly occurred to ourselves on becoming
acquainted with the means through which analytical combinations are actually attained by
the mechanism. We cannot forbear suggesting one practical result which it appears to us
must be greatly facilitated by the independent manner in which the engine orders and
combines its operations: we allude to the attainment of those combinations into which
imaginary quantities enter. This is a branch of its processes into which we have not had the
opportunity of inquiring, and our conjecture therefore as to the principle on which we
conceive the accomplishment of such results may have been made to depend, is very
probably not in accordance with the fact, and less subservient for the purpose than some
other principles, or at least requiring the cooperation of others. It seems to us obvious,
however, that where operations are so independent in their mode of acting, it must be easy,
by means of a few simple provisions, and additions in arranging the mechanism, to bring
out a double set of results, viz.—1st, the numerical magnitudes which are the results of
operations performed on numerical data. (These results are the primary object of the
engine.) 2ndly, the symbolical results to be attached to those numerical results, which
symbolical results are not less the necessary and logical consequences of operations
performed upon symbolical data, than are numerical results when the data are numerical.

If we compare together the powers and the principles of construction of the Difference and
of the Analytical Engines, we shall perceive that the capabilities of the latter are
immeasurably more extensive than those of the former, and that they in fact hold to each
other the same relationship as that of analysis to arithmetic. The Difference Engine can
effect but one particular series of operations, viz. that required for tabulating the integral of
the special function

and as it can only do this for values of n up to 7, it cannot be considered as being the most
general expression even of one particular function, much less as being the expression of
any and all possible functions of all degrees of generality. The Difference Engine can in
reality (as has been already partly explained) do nothing but add; and any other processes,
not excepting those of simple subtraction, multiplication and division, can be performed by
it only just to that extent in which it is possible, by judicious mathematical arrangement
and artifices, to reduce them to a series of additions. The method of differences is, in fact, a
method of additions; and as it includes within its means a larger number of results
attainable by addition simply, than any other mathematical principle, it was very
appropriately selected as the basis on which to construct an Adding Machine, so as to give
to the powers of such a machine the widest possible range. The Analytical Engine, on the
contrary, can either add, subtract, multiply or divide with equal facility; and performs each
of these four operations in a direct manner, without the aid of any of the other three. This
one fact implies everything; and it is scarcely necessary to point out, for instance, that
while the Difference Engine can merely tabulate, and is incapable of developing, the
Analytical Engine can either tabulate or develope.

The former engine is in its nature strictly arithmetical, and the results it can arrive at lie
within a very clearly defined and restricted range, while there is no finite line of
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demarcation which limits the powers of the Analytical Engine. These powers are co-
extensive with our knowledge of the laws of analysis itself, and need be bounded only by
our acquaintance with the latter. Indeed we may consider the engine as the material and
mechanical representative of analysis, and that our actual working powers in this
department of human study will be enabled more effectually than heretofore to keep pace
with our theoretical knowledge of its principles and laws, through the complete control
which the engine gives us over the executive manipulation of algebraical and numerical
symbols.

Those who view mathematical science, not merely as a vast body of abstract and
immutable truths, whose intrinsic beauty, symmetry and logical completeness, when
regarded in their connexion together as a whole, entitle them to a prominent place in the
interest of all profound and logical minds, but as possessing a yet deeper interest for the
human race, when it is remembered that this science constitutes the language through
which alone we can adequately express the great facts of the natural world, and those
unceasing changes of mutual relationship which, visibly or invisibly, consciously or
unconsciously to our immediate physical perceptions, are interminably going on in the
agencies of the creation we live amidst: those who thus think on mathematical truth as the
instrument through which the weak mind of man can most effectually read his Creator's
works, will regard with especial interest all that can tend to facilitate the translation of its
principles into explicit practical forms.

The distinctive characteristic of the Analytical Engine, and that which has rendered it
possible to endow mechanism with such extensive faculties as bid fair to make this engine
the executive right-hand of abstract algebra, is the introduction into it of the principle
which Jacquard devised for regulating, by means of punched cards, the most complicated
patterns in the fabrication of brocaded stuffs. It is in this that the distinction between the
two engines lies. Nothing of the sort exists in the Difference Engine. We may say most
aptly, that the Analytical Engine weaves algebraical patterns just as the Jacquard-loom
weaves flowers and leaves. Here, it seems to us, resides much more of originality than the
Difference Engine can be fairly entitled to claim. We do not wish to deny to this latter all
such claims. We believe that it is the only proposal or attempt ever made to construct a
calculating machine founded on the principle of successive orders of differences, and
capable of printing off its own results; and that this engine surpasses its predecessors, both
in the extent of the calculations which it can perform, in the facility, certainty and accuracy
with which it can effect them, and in the absence of all necessity for the intervention of
human intelligence during the performance of its calculations. Its nature is, however,
limited to the strictly arithmetical, and it is far from being the first or only scheme for
constructing arithmetical calculating machines with more or less of success.

The bounds of arithmetic were however outstepped the moment the idea of applying the
cards had occurred; and the Analytical Engine does not occupy common ground with mere
“calculating machines.” It holds a position wholly its own; and the considerations it
suggests are most interesting in their nature. In enabling mechanism to combine together
general symbols in successions of unlimited variety and extent, a uniting link is established
between the operations of matter and the abstract mental processes of the most abstract
branch of mathematical science. A new, a vast, and a powerful language is developed for
the future use of analysis, in which to wield its truths so that these may become of more
speedy and accurate practical application for the purposes of mankind than the means
hitherto in our possession have rendered possible. Thus not only the mental and the
material, but the theoretical and the practical in the mathematical world, are brought into
more intimate and effective connexion with each other. We are not aware of its being on
record that anything partaking in the nature of what is so well designated the Analytical
Engine has been hitherto proposed, or even thought of, as a practical possibility, any more
than the idea of a thinking or of a reasoning machine.
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We will touch on another point which constitutes an important distinction in the modes of
operating of the Difference and Analytical Engines. In order to enable the former to do its
business, it is necessary to put into its columns the series of numbers constituting the first
terms of the several orders of differences for whatever is the particular table under
consideration. The machine then works upon these as its data. But these data must
themselves have been already computed through a series of calculations by a human head.
Therefore that engine can only produce results depending on data which have been arrived
at by the explicit and actual working out of processes that are in their nature different from
any that come within the sphere of its own powers. In other words, an analysing process
must have been gone through by a human mind in order to obtain the data upon which the
engine then synthetically builds its results. The Difference Engine is in its character
exclusively synthetical, while the Analytical Engine is equally capable of analysis or of
synthesis.

It is true that the Difference Engine can calculate to a much greater extent with these few
preliminary data, than the data themselves required for their own determination. The table
of squares, for instance, can be calculated to any extent whatever, when the numbers one
and two are furnished; and a very few differences computed at any part of a table of
logarithms would enable the engine to calculate many hundreds or even thousands of
logarithms. Still the circumstance of its requiring, as a previous condition, that any function
whatever shall have been numerically worked out, makes it very inferior in its nature and
advantages to an engine which, like the Analytical Engine, requires merely that we should
know the succession and distribution of the operations to be performed; without there
being any occasion, in order to obtain data on which it can work, for our ever having gone
through either the same particular operations which it is itself to effect, or any others.
Numerical data must of course be given it, but they are mere arbitrary ones; not data that
could only be arrived at through a systematic and necessary series of previous numerical
calculations, which is quite a different thing.

To this it may be replied, that an analysing process must equally have been performed in
order to furnish the Analytical Engine with the necessary operative data; and that herein
may also lie a possible source of error. Granted that the actual mechanism is unerring in its
processes, the cards may give it wrong orders. This is unquestionably the case; but there is
much less chance of error, and likewise far less expenditure of time and labour, where
operations only, and the distribution of these operations, have to be made out, than where
explicit numerical results are to be attained. In the case of the Analytical Engine we have
undoubtedly to lay out a certain capital of analytical labour in one particular line; but this is
in order that the engine may bring us in a much larger return in another line. It should be
remembered also that the cards, when once made out for any formula, have all the
generality of algebra, and include an infinite number of particular cases.

We have dwelt considerably on the distinctive peculiarities of each of these engines,
because we think it essential to place their respective attributes in strong relief before the
apprehension of the public; and to define with clearness and accuracy the wholly different
nature of the principles on which each is based, so as to make it self-evident to the reader
(the mathematical reader at least) in what manner and degree the powers of the Analytical
Engine transcend those of an engine, which, like the Difference Engine, can only work out
such results as may be derived from one restricted and particular series of processes, such
as those included in . We think this of importance, because we know that there
exists considerable vagueness and inaccuracy in the mind of persons in general on the
subject. There is a misty notion amongst most of those who have attended at all to it, that
two “calculating machines” have been successively invented by the same person within the
last few years; while others again have never heard but of the one original “calculating
machine,” and are not aware of there being any extension upon this. For either of these two
classes of persons the above considerations are appropriate. While the latter require a



knowledge of the fact that there are two such inventions, the former are not less in want of
accurate and well-defined information on the subject. No very clear or correct ideas prevail
as to the characteristics of each engine, or their respective advantages or disadvantages;
and in meeting with those incidental allusions, of a more or less direct kind, which occur in
so many publications of the day, to these machines, it must frequently be matter of doubt
which “calculating machine” is referred to, or whether both are included in the general
allusion.

We are desirous likewise of removing two misapprehensions which we know obtain, to
some extent, respecting these engines. In the first place it is very generally supposed that
the Difference Engine, after it had been completed up to a certain point, suggested the idea
of the Analytical Engine; and that the second is in fact the improved offspring of the first,
and grew out of the existence of its predecessor, through some natural or else accidental
combination of ideas suggested by this one. Such a supposition is in this instance contrary
to the facts; although it seems to be almost an obvious inference, wherever two inventions,
similar in their nature and objects, succeed each other closely in order of time, and
strikingly in order of value; more especially when the same individual is the author of both.
Nevertheless the ideas which led to the Analytical Engine occurred in a manner wholly
independent of any that were connected with the Difference Engine. These ideas are indeed
in their own intrinsic nature independent of the latter engine, and might equally have
occurred had it never existed nor been even thought of at all.

The second of the misapprehensions above alluded to relates to the well-known suspension,
during some years past, of all progress in the construction of the Difference Engine.
Respecting the circumstances which have interfered with the actual completion of either
invention, we offer no opinion; and in fact are not possessed of the data for doing so, had
we the inclination. But we know that some persons suppose these obstacles (be they what
they may) to have arisen in consequence of the subsequent invention of the Analytical
Engine while the former was in progress. We have ourselves heard it even lamented that an
idea should ever have occurred at all, which had turned out to be merely the means of
arresting what was already in a course of successful execution, without substituting the
superior invention in its stead. This notion we can contradict in the most unqualified
manner. The progress of the Difference Engine had long been suspended, before there were
even the least crude glimmerings of any invention superior to it. Such glimmerings,
therefore, and their subsequent development, were in no way the original cause of that
suspension; although, where difficulties of some kind or other evidently already existed, it
was not perhaps calculated to remove or lessen them that an invention should have been
meanwhile thought of, which, while including all that the first was capable of, possesses
powers so extended as to eclipse it altogether.

We leave it for the decision of each individual (after he has possessed himself of competent
information as to the characteristics of each engine) to determine how far it ought to be
matter of regret that such an accession has been made to the powers of human science,
even if it has (which we greatly doubt) increased to a certain limited extent some already
existing difficulties that had arisen in the way of completing a valuable but lesser work. We
leave it for each to satisfy himself as to the wisdom of desiring the obliteration (were that
now possible) of all records of the more perfect invention, in order that the comparatively
limited one might be finished. The Difference Engine would doubtless fulfil all those
practical objects which it was originally destined for. It would certainly calculate all the
tables that are more directly necessary for the physical purposes of life, such as nautical
and other computations. Those who incline to very strictly utilitarian views may perhaps
feel that the peculiar powers of the Analytical Engine bear upon questions of abstract and
speculative science, rather than upon those involving every-day and ordinary human
interests. These persons being likely to possess but little sympathy, or possibly
acquaintance, with any branches of science which they do not find to be useful (according



to their definition of that word), may conceive that the undertaking of that engine, now that
the other one is already in progress, would be a barren and unproductive laying out of yet
more money and labour; in fact, a work of supererogation. Even in the utilitarian aspect,
however, we do not doubt that very valuable practical results would be developed by the
extended faculties of the Analytical Engine; some of which results we think we could now
hint at, had we the space; and others, which it may not yet be possible to foresee, but which
would be brought forth by the daily increasing requirements of science, and by a more
intimate practical acquaintance with the powers of the engine, were it in actual existence.

On general grounds, both of an a priori description as well as those founded on the
scientific history and experience of mankind, we see strong presumptions that such would
be the case. Nevertheless all will probably concur in feeling that the completion of the
Difference Engine would be far preferable to the non-completion of any calculating engine
at all. With whomsoever or wheresoever may rest the present causes of difficulty that
apparently exist towards either the completion of the old engine, or the commencement of
the new one, we trust they will not ultimately result in this generation's being acquainted
with these inventions through the medium of pen, ink and paper merely; and still more do
we hope, that for the honour of our country's reputation in the future pages of history, these
causes will not lead to the completion of the undertaking by some other nation or
government. This could not but be matter of just regret; and equally so, whether the
obstacles may have originated in private interests and feelings, in considerations of a more
public description, or in causes combining the nature of both such solutions.

We refer the reader to the ‘Edinburgh Review’ of July 1834, for a very able account of the
Difference Engine. The writer of the article we allude to has selected as his prominent
matter for exposition, a wholly different view of the subject from that which M. Menabrea
has chosen. The former chiefly treats it under its mechanical aspect, entering but slightly
into the mathematical principles of which that engine is the representative, but giving, in
considerable length, many details of the mechanism and contrivances by means of which it
tabulates the various orders of differences. M. Menabrea, on the contrary, exclusively
developes the analytical view; taking it for granted that mechanism is able to perform
certain processes, but without attempting to explain how; and devoting his whole attention
to explanations and illustrations of the manner in which analytical laws can be so arranged
and combined as to bring every branch of that vast subject within the grasp of the assumed
powers of mechanism. It is obvious that, in the invention of a calculating engine, these two
branches of the subject are equally essential fields of investigation, and that on their mutual
adjustment, one to the other, must depend all success. They must be made to meet each
other, so that the weak points in the powers of either department may be compensated by
the strong points in those of the other. They are indissolubly connected, though so different
in their intrinsic nature, that perhaps the same mind might not be likely to prove equally
profound or successful in both. We know those who doubt whether the powers of
mechanism will in practice prove adequate in all respects to the demands made upon them
in the working of such complicated trains of machinery as those of the above engines, and
who apprehend that unforeseen practical difficulties and disturbances will arise in the way
of accuracy and of facility of operation. The Difference Engine, however, appears to us to
be in a great measure an answer to these doubts. It is complete as far as it goes, and it does
work with all the anticipated success. The Analytical Engine, far from being more
complicated, will in many respects be of simpler construction; and it is a remarkable
circumstance attending it, that with very simplified means it is so much more powerful.

The article in the ‘Edinburgh Review’ was written some time previous to the occurrence of
any ideas such as afterwards led to the invention of the Analytical Engine; and in the nature
of the Difference Engine there is much less that would invite a writer to take exclusively, or
even prominently, the mathematical view of it, than in that of the Analytical Engine;
although mechanism has undoubtedly gone much further to meet mathematics, in the case



of this engine, than of the former one. Some publication embracing the mechanical view of
the Analytical Engine is a desideratum which we trust will be supplied before long.

Those who may have the patience to study a moderate quantity of rather dry details will
find ample compensation, after perusing the article of 1834, in the clearness with which a
succinct view will have been attained of the various practical steps through which
mechanism can accomplish certain processes; and they will also find themselves still
further capable of appreciating M. Menabrea's more comprehensive and generalized
memoir. The very difference in the style and object of these two articles makes them
peculiarly valuable to each other; at least for the purposes of those who really desire
something more than a merely superficial and popular comprehension of the subject of
calculating engines.

A. A. L.

Note B

That portion of the Analytical Engine here alluded to is called the storehouse. It contains an
indefinite number of the columns of discs described by M. Menabrea. The reader may
picture to himself a pile of rather large draughtsmen heaped perpendicularly one above
another to a considerable height, each counter having the digits from 0 to 9 inscribed on its
edge at equal intervals; and if he then conceives that the counters do not actually lie one
upon another so as to be in contact, but are fixed at small intervals of vertical distance on a
common axis which passes perpendicularly through their centres, and around which each
disc can revolve horizontally so that any required digit amongst those inscribed on its
margin can be brought into view, he will have a good idea of one of these columns. The
lowest of the discs on any column belongs to the units, the next above to the tens, the next
above this to the hundreds, and so on. Thus, if we wished to inscribe 1345 on a column of
the engine, it would stand thus:—

1
3
4
5

In the Difference Engine there are seven of these columns placed side by side in a row, and
the working mechanism extends behind them: the general form of the whole mass of
machinery is that of a quadrangular prism (more or less approaching to the cube); the
results always appearing on that perpendicular face of the engine which contains the
columns of discs, opposite to which face a spectator may place himself. In the Analytical
Engine there would be many more of these columns, probably at least two hundred. The
precise form and arrangement which the whole mass of its mechanism will assume is not
yet finally determined.

We may conveniently represent the columns of discs on paper in a diagram like the
following:—



The V's are for the purpose of convenient reference to any column, either in writing or
speaking, and are consequently numbered. The reason why the letter V is chosen for the
purpose in preference to any other letter, is because these columns are designated (as the
reader will find in proceeding with the Memoir) the Variables, and sometimes the Variable
columns, or the columns of Variables. The origin of this appellation is, that the values on
the columns are destined to change, that is to vary, in every conceivable manner. But it is
necessary to guard against the natural misapprehension that the columns are only intended
to receive the values of the variables in an analytical formula, and not of the constants. The
columns are called Variables on a ground wholly unconnected with the analytical
distinction between constants and variables. In order to prevent the possibility of
confusion, we have, both in the translation and in the notes, written Variable with a capital
letter when we use the word to signify a column of the engine, and variable with a small
letter when we mean the variable of a formula. Similarly, Variable-cards signify any cards
that belong to a column of the engine.

To return to the explanation of the diagram: each circle at the top is intended to contain the
algebraic sign + or −, either of which can be substituted for the other, according as the
number represented on the column below is positive or negative. In a similar manner any
other purely symbolical results of algebraical processes might be made to appear in these
circles. In Note A. the practicability of developing symbolical with no less ease than
numerical results has been touched on. The zeros beneath the symbolic circles represent
each of them a disc, supposed to have the digit 0 presented in front. Only four tiers of zeros
have been figured in the diagram, but these may be considered as representing thirty or
forty, or any number of tiers of discs that may be required. Since each disc can present any
digit, and each circle any sign, the discs of every column may be so adjusted as to express
any positive or negative number whatever within the limits of the machine; which limits
depend on the perpendicular extent of the mechanism, that is, on the number of discs to a
column.

Each of the squares below the zeros is intended for the inscription of any general symbol
or combination of symbols we please; it being understood that the number represented on
the column immediately above is the numerical value of that symbol, or combination of
symbols. Let us, for instance, represent the three quantities a, n, x, and let us further
suppose that a = 5, n = 7, x = 98. We should have—
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Read footnote.

We may now combine these symbols in a variety of ways, so as to form any required
function or functions of them, and we may then inscribe each such function below
brackets, every bracket uniting together those quantities (and those only) which enter into
the function inscribed below it. We must also, when we have decided on the particular
function whose numerical value we desire to calculate, assign another column to the right-
hand for receiving the results, and must inscribe the function in the square below this
column. In the above instance we might have any one of the following functions:—

Let us select the first. It would stand as follows, previous to calculation:—

The data being given, we must now put into the engine the cards proper for directing the
operations in the case of the particular function chosen. These operations would in this
instance be,—

First, six multiplications in order to get xn (=987 for the above particular data).

Secondly, one multiplication in order then to get a·xn (=5·987).

In all, seven multiplications to complete the whole process. We may thus represent them:—

(×, ×, ×, ×, ×, ×, ×), or 7 (×).

The multiplications would, however, at successive stages in the solution of the problem,
operate on pairs of numbers, derived from different columns. In other words, the same
operation would be performed on different subjects of operation. And here again is an
illustration of the remarks made in the preceding Note on the independent manner in which
the engine directs its operations. In determining the value of axn, the operations are
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homogeneous, but are distributed amongst different subjects of operation, at successive
stages of the computation. It is by means of certain punched cards, belonging to the
Variables themselves, that the action of the operations is so distributed as to suit each
particular function. The Operation-cards merely determine the succession of operations in
a general manner. They in fact throw all that portion of the mechanism included in the mill
into a series of different states, which we may call the adding state, or the multiplying
state, &c. respectively. In each of these states the mechanism is ready to act in the way
peculiar to that state, on any pair of numbers which may be permitted to come within its
sphere of action. Only one of these operating states of the mill can exist at a time; and the
nature of the mechanism is also such that only one pair of numbers can be received and
acted on at a time. Now, in order to secure that the mill shall receive a constant supply of
the proper pairs of numbers in succession, and that it shall also rightly locate the result of
an operation performed upon any pair, each Variable has cards of its own belonging to it. It
has, first, a class of cards whose business it is to allow the number on the Variable to pass
into the mill, there to be operated upon. These cards may be called the Supplying-cards.
They furnish the mill with its proper food. Each Variable has, secondly, another class of
cards, whose office it is to allow the Variable to receive a number from the mill. These
cards may be called the Receiving-cards. They regulate the location of results, whether
temporary or ultimate results. The Variable-cards in general (including both the preceding
classes) might, it appears to us, be even more appropriately designated the Distributive-
cards, since it is through their means that the action of the operations, and the results of this
action, are rightly distributed.

There are two varieties of the Supplying Variable-cards, respectively adapted for fulfilling
two distinct subsidiary purposes: but as these modifications do not bear upon the present
subject, we shall notice them in another place.

In the above case of axn, the Operation-cards merely order seven multiplications, that is,
they order the mill to be in the multiplying state seven successive times (without any
reference to the particular columns whose numbers are to be acted upon). The proper
Distributive Variable-cards step in at each successive multiplication, and cause the
distributions requisite for the particular case.

The engine might be made to calculate all these in succession. Having completed axn, the
function xan might be written under the brackets instead of axn, and a new calculation
commenced (the appropriate Operation and Variable-cards for the new function of course
coming into play). The results would then appear on V5. So on for any number of different
functions of the quantities a, n, x. Each result might either permanently remain on its
column during the succeeding calculations, so that when all the functions had been
computed, their values would simultaneously exist on V4, V5, V6, &c.; or each result might
(after being printed off, or used in any specified manner) be effaced, to make way for its
successor. The square under V4 ought, for the latter arrangement, to have the functions axn,
xan, anx, &c. successively inscribed in it.

Let us now suppose that we have two expressions whose values have been computed by the
engine independently of each other (each having its own group of columns for data and
results). Let them be axn, and bpy. They would then stand as follows on the columns:—



We may now desire to combine together these two results, in any manner we please; in
which case it would only be necessary to have an additional card or cards, which should
order the requisite operations to be performed with the numbers on the two result-columns
V4 and V8, and the result of these further operations to appear on a new column, V9. Say
that we wish to divide axn by bpy. The numerical value of this division would then appear
on the column V9, beneath which we have inscribed . The whole series of operations

from the beginning would be as follows (n being = 7):

{7(×), 2(×), ÷}, or {9(×), ÷}.

This example is introduced merely to show that we may, if we please, retain separately and
permanently any intermediate results (like axn, bpy) which occur in the course of processes

having an ulterior and more complicated result as their chief and final object (like ).

Any group of columns may be considered as representing a general function, until a
special one has been implicitly impressed upon them through the introduction into the
engine of the Operation and Variable-cards made out for a particular function. Thus, in the
preceding example, V1, V2, V3, V5, V6, V7 represent the general function Φ(a, n, b, p, x,
y) until the function  has been determined on, and implicitly expressed by the placing

of the right cards in the engine. The actual working of the mechanism, as regulated by
these cards, then explicitly developes the value of the function. The inscription of a
function under the brackets, and in the square under the result-column, in no way
influences the processes or the results, and is merely a memorandum for the observer, to
remind him of what is going on. It is the Operation and the Variable-cards only which in
reality determine the function. Indeed it should be distinctly kept in mind, that the
inscriptions within any of the squares are quite independent of the mechanism or workings
of the engine, and are nothing but arbitrary memorandums placed there at pleasure to assist
the spectator.

The further we analyse the manner in which such an engine performs its processes and
attains its results, the more we perceive how distinctly it places in a true and just light the
mutual relations and connexion of the various steps of mathematical analysis; how clearly
it separates those things which are in reality distinct and independent, and unites those
which are mutually dependent.

A. A. L.

Note C



Those who may desire to study the principles of the Jacquard-loom in the most effectual
manner, viz. that of practical observation, have only to step into the Adelaide Gallery or the
Polytechnic Institution. In each of these valuable repositories of scientific illustration, a
weaver is constantly working at a Jacquard-loom, and is ready to give any information that
may be desired as to the construction and modes of acting of his apparatus. The volume on
the manufacture of silk, in Lardner's Cyclopædia, contains a chapter on the Jacquard-loom,
which may also be consulted with advantage.

The mode of application of the cards, as hitherto used in the art of weaving, was not found,
however, to be sufficiently powerful for all the simplifications which it was desirable to
attain in such varied and complicated processes as those required in order to fulfil the
purposes of an Analytical Engine. A method was devised of what was technically
designated backing the cards in certain groups according to certain laws. The object of this
extension is to secure the possibility of bringing any particular card or set of cards into use
any number of times successively in the solution of one problem. Whether this power shall
be taken advantage of or not, in each particular instance, will depend on the nature of the
operations which the problem under consideration may require. The process is alluded to
by M. Menabrea, and it is a very important simplification. It has been proposed to use it for
the reciprocal benefit of that art, which, while it has itself no apparent connexion with the
domains of abstract science, has yet proved so valuable to the latter, in suggesting the
principles which, in their new and singular field of application, seem likely to place
algebraical combinations not less completely within the province of mechanism, than are
all those varied intricacies of which intersecting threads are susceptible. By the
introduction of the system of backing into the Jacquard-loom itself, patterns which should
possess symmetry, and follow regular laws of any extent, might be woven by means of
comparatively few cards.

Those who understand the mechanism of this loom will perceive that the above
improvement is easily effected in practice, by causing the prism over which the train of
pattern-cards is suspended to revolve backwards instead of forwards, at pleasure, under the
requisite circumstances; until, by so doing, any particular card, or set of cards, that has
done duty once, and passed on in the ordinary regular succession, is brought back to the
position it occupied just before it was used the preceding time. The prism then resumes its
forward rotation, and thus brings the card or set of cards in question into play a second
time. This process may obviously be repeated any number of times.

A. A. L.

Note D

We have represented the solution of these two equations below, with every detail, in a
diagram similar to those used in Note B; but additional explanations are requisite, partly in
order to make this more complicated case perfectly clear, and partly for the comprehension
of certain indications and notations not used in the preceding diagrams. Those who may
wish to understand Note G completely, are recommended to pay particular attention to the
contents of the present Note, or they will not otherwise comprehend the similar notation
and indications when applied to a much more complicated case.



Clicking on the diagram displays a larger image of it. Your browser's “Back” button will return you to this
document. A ready to print PostScript file for this diagram is also available for downloading in a ZIP
compressed archive.

In all calculations, the columns of Variables used may be divided into three classes:—

  1st. Those on which the data are inscribed:
  2ndly. Those intended to receive the final results:
   3rdly. Those intended to receive such intermediate and temporary combinations of the
primitive data as are not to be permanently retained, but are merely needed for working
with, in order to attain the ultimate results. Combinations of this kind might properly be
called secondary data. They are in fact so many successive stages towards the final result.
The columns which receive them are rightly named Working-Variables, for their office is in
its nature purely subsidiary to other purposes. They develope an intermediate and transient
class of results, which unite the original data with the final results.

The Result-Variables sometimes partake of the nature of Working-Variables. It frequently
happens that a Variable destined to receive a final result is the recipient of one or more
intermediate values successively, in the course of the processes. Similarly, the Variables for
data often become Working-Variables, or Result-Variables, or even both in succession. It so
happens, however, that in the case of the present equations the three sets of offices remain
throughout perfectly separate and independent.

It will be observed, that in the squares below the Working-Variables nothing is inscribed.
Any one of these Variables is in many cases destined to pass through various values
successively during the performance of a calculation (although in these particular equations
no instance of this occurs) . Consequently no one fixed symbol, or combination of symbols,
should be considered as properly belonging to a merely Working-Variable; and as a general
rule their squares are left blank. Of course in this, as in all other cases where we mention a
general rule, it is understood that many particular exceptions may be expedient.

In order that all the indications contained in the diagram may be completely understood, we
shall now explain two or three points, not hitherto touched on. When the value on any
Variable is called into use, one of two consequences may be made to result. Either the
value may return to the Variable after it has been used, in which case it is ready for a
second use if needed; or the Variable may be made zero. (We are of course not considering
a third case, of not unfrequent occurrence, in which the same Variable is destined to receive
the result of the very operation which it has just supplied with a number.) Now the ordinary
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rule is, that the value returns to the Variable; unless it has been foreseen that no use for that
value can recur, in which case zero is substituted. At the end of a calculation, therefore,
every column ought as a general rule to be zero, excepting those for results. Thus it will be
seen by the diagram, that when m, the value on V0, is used for the second time by
Operation 5, V0 becomes 0, since m is not again needed; that similarly, when (mn' − m'n),
on V12, is used for the third time by Operation 11, V12 becomes zero, since (mn' − m'n) is
not again needed. In order to provide for the one or the other of the courses above
indicated, there are two varieties of the Supplying Variable-cards. One of these varieties has
provisions which cause the number given off from any Variable to return to that Variable
after doing its duty in the mill. The other variety has provisions which cause zero to be
substituted on the Variable, for the number given off. These two varieties are distinguished,
when needful, by the respective appellations of the Retaining Supply-cards and the Zero
Supply-cards. We see that the primary office (see Note B.) of both these varieties of cards
is the same; they only differ in their secondary office.

Every Variable thus has belonging to it one class of Receiving Variable-cards and two
classes of Supplying Variable-cards. It is plain however that only the one or the other of
these two latter classes can be used by any one Variable for one operation; never both
simultaneously, their respective functions being mutually incompatible.

It should be understood that the Variable-cards are not placed in immediate contiguity with
the columns. Each card is connected by means of wires with the column it is intended to
act upon.

Our diagram ought in reality to be placed side by side with M. Menabrea's corresponding
table, so as to be compared with it, line for line belonging to each operation. But it was
unfortunately inconvenient to print them in this desirable form. The diagram is, in the
main, merely another manner of indicating the various relations denoted in M. Menabrea's
table. Each mode has some advantages and some disadvantages. Combined, they form a
complete and accurate method of registering every step and sequence in all calculations
performed by the engine.

No notice has yet been taken of the upper indices which are added to the left of each V in
the diagram; an addition which we have also taken the liberty of making to the V's in M.
Menabrea's tables 3 and 4, since it does not alter anything therein represented by him, but
merely adds something to the previous indications of those tables. The lower indices are
obviously indices of locality only, and are wholly independent of the operations performed
or of the results obtained, their value continuing unchanged during the performance of
calculations. The upper indices, however, are of a different nature. Their office is to
indicate any alteration in the value which a Variable represents; and they are of course
liable to changes during the processes of a calculation. Whenever a Variable has only zeros
upon it, it is called 0V; the moment a value appears on it (whether that value be placed
there arbitrarily, or appears in the natural course of a calculation), it becomes 1V. If this
value gives place to another value, the Variable becomes 2V, and so forth. Whenever a
value again gives place to zero, the Variable again becomes 0V, even if it have been nV the
moment before. If a value then again be substituted, the Variable becomes n+1V (as it
would have done if it had not passed through the intermediate 0V); &c. &c. Just before any
calculation is commenced, and after the data have been given, and everything adjusted and
prepared for setting the mechanism in action, the upper indices of the Variables for data are
all unity, and those for the Working and Result-variables are all zero. In this state the
diagram represents them.

There are several advantages in having a set of indices of this nature; but these advantages
are perhaps hardly of a kind to be immediately perceived, unless by a mind somewhat
accustomed to trace the successive steps by means of which the engine accomplishes its
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purposes. We have only space to mention in a general way, that the whole notation of the
tables is made more consistent by these indices, for they are able to mark a difference in
certain cases, where there would otherwise be an apparent identity confusing in its
tendency. In such a case as Vn=Vp+Vn there is more clearness and more consistency with
the usual laws of algebraical notation, in being able to write m+1Vn=qVp+mVn. It is also
obvious that the indices furnish a powerful means of tracing back the derivation of any
result; and of registering various circumstances concerning that series of successive
substitutions, of which every result is in fact merely the final consequence; circumstances
that may in certain cases involve relations which it is important to observe, either for
purely analytical reasons, or for practically adapting the workings of the engine to their
occurrence. The series of substitutions which lead to the equations of the diagram are as
follow:—

 
Read footnote.

There are three successive substitutions for each of these equations. The formulæ (2.), (3.)
and (4.) are implicitly contained in (1.), which latter we may consider as being in fact the
condensed expression of any of the former. It will be observed that every succeeding
substitution must contain twice as many V's as its predecessor. So that if a problem require
n substitutions, the successive series of numbers for the V's in the whole of them will be 2,
4, 8, 16…2n.

The substitutions in the preceding equations happen to be of little value towards illustrating
the power and uses of the upper indices, for, owing to the nature of these particular
equations, the indices are all unity throughout. We wish we had space to enter more fully
into the relations which these indices would in many cases enable us to trace.

M. Menabrea incloses the three centre columns of his table under the general title Variable-
cards. The V's however in reality all represent the actual Variable-columns of the engine,
and not the cards that belong to them. Still the title is a very just one, since it is through the
special action of certain Variable-cards (when combined with the more generalized agency
of the Operation-cards) that every one of the particular relations he has indicated under that
title is brought about.

Suppose we wish to ascertain how often any one quantity, or combination of quantities, is
brought into use during a calculation. We easily ascertain this, from the inspection of any
vertical column or columns of the diagram in which that quantity may appear. Thus, in the
present case, we see that all the data, and all the intermediate results likewise, are used
twice, excepting (mn' − m'n), which is used three times.

The order in which it is possible to perform the operations for the present example, enables
us to effect all the eleven operations of which it consists with only three Operation cards;
because the problem is of such a nature that it admits of each class of operations being
performed in a group together; all the multiplications one after another, all the subtractions
one after another, &c. The operations are {6(×), 3(-), 2(÷)}.

Since the very definition of an operation implies that there must be two numbers to act
upon, there are of course two Supplying Variable-cards necessarily brought into action for
every operation, in order to furnish the two proper numbers. (See Note B.) Also, since
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every operation must produce a result, which must be placed somewhere, each operation
entails the action of a Receiving Variable-card, to indicate the proper locality for the result.
Therefore, at least three times as many Variable-cards as there are operations (not
Operation-cards, for these, as we have just seen, are by no means always as numerous as
the operations) are brought into use in every calculation. Indeed, under certain
contingencies, a still larger proportion is requisite; such, for example, would probably be
the case when the same result has to appear on more than one Variable simultaneously
(which is not unfrequently a provision necessary for subsequent purposes in a calculation),
and in some other cases which we shall not here specify. We see therefore that a great
disproportion exists between the amount of Variable and of Operation-cards requisite for
the working of even the simplest calculation.

All calculations do not admit, like this one, of the operations of the same nature being
performed in groups together. Probably very few do so without exceptions occurring in one
or other stage of the progress; and some would not admit it at all. The order in which the
operations shall be performed in every particular case is a very interesting and curious
question, on which our space does not permit us fully to enter. In almost every computation
a great variety of arrangements for the succession of the processes is possible, and various
considerations must influence the selection amongst them for the purposes of a Calculating
Engine. One essential object is to choose that arrangement which shall tend to reduce to a
minimum the time necessary for completing the calculation.

It must be evident how multifarious and how mutually complicated are the considerations
which the working of such an engine involve. There are frequently several distinct sets of
effects going on simultaneously; all in a manner independent of each other, and yet to a
greater or less degree exercising a mutual influence. To adjust each to every other, and
indeed even to perceive and trace them out with perfect correctness and success, entails
difficulties whose nature partakes to a certain extent of those involved in every question
where conditions are very numerous and inter-complicated; such as for instance the
estimation of the mutual relations amongst statistical phænomena, and of those involved in
many other classes of facts.

A. A. L.

Note E

This example has evidently been chosen on account of its brevity and simplicity, with a
view merely to explain the manner in which the engine would proceed in the case of an
analytical calculation containing variables, rather than to illustrate the extent of its powers
to solve cases of a difficult and complex nature. The equations in first example in the
Memoir are in fact a more complicated problem than the present one.

We have not subjoined any diagram of its development for this new example, as we did for
the former one, because this is unnecessary after the full application already made of those
diagrams to the illustration of M. Menabrea's excellent tables.

It may be remarked that a slight discrepancy exists between the formulæ

(a + bx1)
(A + B cos1 x)

given in the Memoir as the data for calculation, and the results of the calculation as
developed in the last division of the table which accompanies it. To agree perfectly with
this latter, the data should have been given as



(ax0 + bx1)
(A cos0 x + B cos1 x)

The following is a more complicated example of the manner in which the engine would
compute a trigonometrical function containing variables. To multiply

  A+A1cos θ + A2cos 2θ + A3cos 3θ + ···

by B + B1cos θ.

Let the resulting products be represented under the general form

C0 + C1cos θ + C2cos 2θ + C3cos 3θ + ··· (1.)

This trigonometrical series is not only in itself very appropriate for illustrating the
processes of the engine, but is likewise of much practical interest from its frequent use in
astronomical computations. Before proceeding further with it, we shall point out that there
are three very distinct classes of ways in which it may be desired to deduce numerical
values from any analytical formula.

First. We may wish to find the collective numerical value of the whole formula, without
any reference to the quantities of which that formula is a function, or to the particular mode
of their combination and distribution, of which the formula is the result and representative.
Values of this kind are of a strictly arithmetical nature in the most limited sense of the term,
and retain no trace whatever of the processes through which they have been deduced. In
fact, any one such numerical value may have been attained from an infinite variety of data,
or of problems. The values for x and y in the two equations (see Note D.) come under this
class of numerical results.

Secondly. We may propose to compute the collective numerical value of each term of a
formula, or of a series, and to keep these results separate. The engine must in such a case
appropriate as many columns to results as there are terms to compute.

Thirdly. It may be desired to compute the numerical value of various subdivisions of each
term, and to keep all these results separate. It may be required, for instance, to compute
each coefficient separately from its variable, in which particular case the engine must
appropriate two result-columns to every term that contains both a variable and coefficient.

There are many ways in which it may be desired in special cases to distribute and keep
separate the numerical values of different parts of an algebraical formula; and the power of
effecting such distributions to any extent is essential to the algebraical character of the
Analytical Engine. Many persons who are not conversant with mathematical studies,
imagine that because the business of the engine is to give its results in numerical notation,
the nature of its processes must consequently be arithmetical and numerical, rather than
algebraical and analytical. This is an error. The engine can arrange and combine its
numerical quantities exactly as if they were letters or any other general symbols; and in
fact it might bring out its results in algebraical notation, were provisions made accordingly.
It might develope three sets of results simultaneously, viz. symbolic results (as already
alluded to in Notes A. and B.), numerical results (its chief and primary object); and
algebraical results in literal notation. This latter however has not been deemed a necessary
or desirable addition to its powers, partly because the necessary arrangements for effecting
it would increase the complexity and extent of the mechanism to a degree that would not be
commensurate with the advantages, where the main object of the invention is to translate
into numerical language general formulæ of analysis already known to us, or whose laws
of formation are known to us. But it would be a mistake to suppose that because its results
are given in the notation of a more restricted science, its processes are therefore restricted



to those of that science. The object of the engine is in fact to give the utmost practical
efficiency to the resources of numerical interpretations of the higher science of analysis,
while it uses the processes and combinations of this latter.

To return to the trigonometrical series. We shall only consider the first four terms of the
factor (A + A1 cos θ + &c.), since this will be sufficient to show the method. We propose to
obtain separately the numerical value of each coefficient C0, C1, &c. of (1.). The direct
multiplication of the two factors gives

(2.)

a result which would stand thus on the engine:—

The variable belonging to each coefficient is written below it, as we have done in the
diagram, by way of memorandum. The only further reduction which is at first apparently
possible in the preceding result, would be the addition of V21 to V31 (in which case B1A
should be effaced from V31). The whole operations from the beginning would then be—

First Series of 
Operations

Second Series of 
Operations

Third Series, which contains
only one (final) operation

1V10×
1V0 = 

1V20
1V11×

1V0 = 
1V31

1V21×
1V31 = 

2V21, and
1V10×

1V1 = 
1V21

1V11×
1V1 = 

1V32 V31 becomes = 0.
1V10×

1V2 = 
1V22

1V11×
1V2 = 

1V33
1V10×

1V3 = 
1V23

1V11×
1V3 = 

1V34

We do not enter into the same detail of every step of the processes as in the examples of
Notes D. and G., thinking it unnecessary and tedious to do so. The reader will remember
the meaning and use of the upper and lower indices, &c., as before explained.

To proceed: we know that

(3.)

Consequently, a slight examination of the second line of (2.) will show that by making the
proper substitutions, (2.) will become



These coefficients should respectively appear on

We shall perceive, if we inspect the particular arrangement of the results in (2.) on the
Result-columns as represented in the diagram, that, in order to effect this transformation,
each successive coefficient upon V32, V33, &c. (beginning with V32), must through means
of proper cards be divided by two; and that one of the halves thus obtained must be added
to the coefficient on the Variable which precedes it by ten columns, and the other half to the
coefficient on the Variable which precedes it by twelve columns; V32, V33, &c. themselves
becoming zeros during the process.

This series of operations may be thus expressed:—

Fourth Series 

Read footnote.

The calculation of the coefficients C0, C1, &c. of (1.) would now be completed, and they
would stand ranged in order on V20, V21, &c. It will be remarked, that from the moment
the fourth series of operations is ordered, the Variables V31, V32, &c. cease to be Result-
Variables, and become mere Working-Variables.

The substitution made by the engine of the processes in the second side of (3.) for those in
the first side is an excellent illustration of the manner in which we may arbitrarily order it
to substitute any function, number, or process, at pleasure, for any other function, number
or process, on the occurrence of a specified contingency.

We will now suppose that we desire to go a step further, and to obtain the numerical value
of each complete term of the product (1.); that is, of each coefficient and variable united,
which for the (n + 1)th term would be .

We must for this purpose place the variables themselves on another set of columns, V41,
V42, &c., and then order their successive multiplication by V21, V22, &c., each for each.
There would thus be a final series of operations as follows:—

Fifth and Final Series of Operations
2V20 × 0V40 = 

1V40
3V21 × 0V41 = 

1V41
3V22 × 0V42 = 

1V42
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2V23 × 0V43 = 
1V43

1V24 × 0V44 = 
1V44

(N.B. that V40 being intended to receive the coefficient on V20 which has no variable, will
only have cos 0θ (=1) inscribed on it, preparatory to commencing the fifth series of
operations.)

From the moment that the fifth and final series of operations is ordered, the Variables V20,
V21, &c. then in their turn cease to be Result-Variables and become mere Working-
Variables; V40, V41, &c. being now the recipients of the ultimate results.

We should observe, that if the variables cos θ, cos  2θ, cos  3θ, &c. are furnished, they
would be placed directly upon V41, V42, &c., like any other data. If not, a separate
computation might be entered upon in a separate part of the engine, in order to calculate
them, and place them on V41, &c.

We have now explained how the engine might compute (1.) in the most direct manner,
supposing we knew nothing about the general term of the resulting series. But the engine
would in reality set to work very differently, whenever (as in this case) we do know the law
for the general term.

The first two terms of (1.) are

(4.)

and the general term for all after these is

(5.)

which is the coefficient of the (n+1)th term. The engine would calculate the first two terms
by means of a separate set of suitable Operation-cards, and would then need another set for
the third term; which last set of Operation-cards would calculate all the succeeding terms
ad infinitum, merely requiring certain new Variable-cards for each term to direct the
operations to act on the proper columns. The following would be the successive sets of
operations for computing the coefficients of n+2 terms:—

(×, ×, ÷, +), (×, ×, ×, ÷, +, +), n(×, +, ×, ÷, +).

Or we might represent them as follows, according to the numerical order of the operations:
—

(1, 2…4), (5, 6…10), n(11, 12…15).

The brackets, it should be understood, point out the relation in which the operations may be
grouped, while the comma marks succession. The symbol + might be used for this latter
purpose, but this would be liable to produce confusion, as + is also necessarily used to
represent one class of the actual operations which are the subject of that succession. In
accordance with this meaning attached to the comma, care must be taken when any one
group of operations recurs more than once, as is represented above by n(11…l5), not to
insert a comma after the number or letter prefixed to that group. n, (11…15) would stand
for an operation n, followed by the group of operations (11…15); instead of denoting the
number of groups which are to follow each other.

Wherever a general term exists, there will be a recurring group of operations, as in the
above example. Both for brevity and for distinctness, a recurring group is called a cycle. A



cycle of operations, then, must be understood to signify any set of operations which is
repeated more than once. It is equally a cycle, whether it be repeated twice only, or an
indefinite number of times; for it is the fact of a repetition occurring at all that constitutes
it such. In many cases of analysis there is a recurring group of one or more cycles; that is, a
cycle of a cycle, or a cycle of cycles. For instance: suppose we wish to divide a series by a
series,

(1.)

it being required that the result shall be developed, like the dividend and the divisor, in
successive powers of x. A little consideration of (1.), and of the steps through which
algebraical division is effected, will show that (if the denominator be supposed to consist of
p terms) the first partial quotient will be completed by the following operations:—

(2.) {(÷), p(×, −)}   or   {(1), p(2, 3)},

that the second partial quotient will be completed by an exactly similar set of operations,
which acts on the remainder obtained by the first set, instead of on the original dividend.
The whole of the processes therefore that have been gone through, by the time the second
partial quotient has been obtained, will be,—

(3.) 2{(÷), p( × , −)}   or   2{(1), p(2, 3)},

which is a cycle that includes a cycle, or a cycle of the second order. The operations for the
complete division, supposing we propose to obtain n terms of the series constituting the
quotient, will be,—

(4.) n{(÷), p( × , −)}   or   n{(1), p(2, 3)},

It is of course to be remembered that the process of algebraical division in reality continues
ad infinitum, except in the few exceptional cases which admit of an exact quotient being
obtained. The number n in the formula (4.) is always that of the number of terms we
propose to ourselves to obtain; and the nth partial quotient is the coefficient of the (n-1)th
power of x.

There are some cases which entail cycles of cycles of cycles, to an indefinite extent. Such
cases are usually very complicated, and they are of extreme interest when considered with
reference to the engine. The algebraical development in a series of the nth function of any
given function is of this nature. Let it be proposed to obtain the nth function of

(5.) Φ(a, b, c, …, x), x being the variable.

We should premise, that we suppose the reader to understand what is meant by an nth
function. We suppose him likewise to comprehend distinctly the difference between
developing an nth function algebraically, and merely calculating an nth function
arithmetically. If he does not, the following will be by no means very intelligible; but we
have not space to give any preliminary explanations. To proceed: the law, according to
which the successive functions of (5.) are to be developed, must of course first be fixed on.
This law may be of very various kinds. We may propose to obtain our results in successive
powers of x, in which case the general form would be

C + C1x + C2x2 + &c.;

or in successive powers of n itself, the index of the function we are ultimately to obtain, in
which case the general form would be



C + C1n + C2n2 + &c.;

and x would only enter in the coefficients. Again, other functions of x or of n instead of
powers might be selected. It might be in addition proposed, that the coefficients themselves
should be arranged according to given functions of a certain quantity. Another mode would
be to make equations arbitrarily amongst the coefficients only, in which case the several
functions, according to either of which it might be possible to develope the nth function of
(5.), would have to be determined from the combined consideration of these equations and
of (5.) itself.

The algebraical nature of the engine (so strongly insisted on in a previous part of this
Note) would enable it to follow out any of these various modes indifferently; just as we
recently showed that it can distribute and separate the numerical results of any one
prescribed series of processes, in a perfectly arbitrary manner. Were it otherwise, the engine
could merely compute the arithmetical nth function, a result which, like any other purely
arithmetical results, would be simply a collective number, bearing no traces of the data or
the processes which had led to it.

Secondly, the law of development for the nth function being selected, the next step would
obviously be to develope (5.) itself, according to this law. This result would be the first
function, and would be obtained by a determinate series of processes. These in most cases
would include amongst them one or more cycles of operations.

The third step (which would consist of the various processes necessary for effecting the
actual substitution of the series constituting the first function, for the variable itself) might
proceed in either of two ways. It might make the substitution either wherever x occurs in
the original (5.), or it might similarly make it wherever x occurs in the first function itself
which is the equivalent of (5.). In some cases the former mode might be best, and in others
the latter.

Whichever is adopted, it must be understood that the result is to appear arranged in a series
following the law originally prescribed for the development of the nth function. This result
constitutes the second function; with which we are to proceed exactly as we did with the
first function, in order to obtain the third function, and so on, n-1 times, to obtain the nth
function. We easily perceive that since every successive function is arranged in a series
following the same law, there would (after the first function is obtained) be a cycle of a
cycle of a cycle, &c. of operations, one, two, three, up to n-1 times, in order to get the nth
function. We say, after the first function is obtained, because (for reasons on which we
cannot here enter) the first function might in many cases be developed through a set of
processes peculiar to itself, and not recurring for the remaining functions.

We have given but a very slight sketch of the principal general steps which would be
requisite for obtaining an nth function of such a formula as (5.). The question is so
exceedingly complicated, that perhaps few persons can be expected to follow, to their own
satisfaction, so brief and general a statement as we are here restricted to on this subject.
Still it is a very important case as regards the engine, and suggests ideas peculiar to itself,
which we should regret to pass wholly without allusion. Nothing could be more interesting
than to follow out, in every detail, the solution by the engine of such a case as the above;
but the time, space and labour this would necessitate, could only suit a very extensive
work.

To return to the subject of cycles of operations: some of the notation of the integral calculus
lends itself very aptly to express them: (2.) might be thus written:—

(6.)
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where p stands for the variable; (+ 1)p for the function of the variable, that is, for Φp; and
the limits are from 1 to p, or from 0 to p-1, each increment being equal to unity. Similarly,
(4.) would be,—

(7.)

the limits of n being from 1 to n, or from 0 to n-1,

(8.) or   

Perhaps it may be thought that this notation is merely a circuitous way of expressing what
was more simply and as effectually expressed before; and, in the above example, there may
be some truth in this. But there is another description of cycles which can only effectually
be expressed, in a condensed form, by the preceding notation. We shall call them varying
cycles. They are of frequent occurrence, and include successive cycles of operations of the
following nature:—

(9.)

where each cycle contains the same group of operations, but in which the number of
repetitions of the group varies according to a fixed rate, with every cycle. (9.) can be well
expressed as follows:—

(10.) , the limits of p being from p-n to p.

Independent of the intrinsic advantages which we thus perceive to result in certain cases
from this use of the notation of the integral calculus, there are likewise considerations
which make it interesting, from the connections and relations involved in this new
application. It has been observed in some of the former Notes, that the processes used in
analysis form a logical system of much higher generality than the applications to number
merely. Thus, when we read over any algebraical formula, considering it exclusively with
reference to the processes of the engine, and putting aside for the moment its abstract
signification as to the relations of quantity, the symbols +, ×, &c. in reality represent (as
their immediate and proximate effect, when the formula is applied to the engine) that a
certain prism which is a part of the mechanism (see Note C.) turns a new face, and thus
presents a new card to act on the bundles of levers of the engine; the new card being
perforated with holes, which are arranged according to the peculiarities of the operation of
addition, or of multiplication, &c. Again, the numbers in the preceding formula (8.), each
of them really represents one of these very pieces of card that are hung over the prism.

Now in the use made in the formulæ (7.), (8.) and (10.), of the notation of the integral
calculus, we have glimpses of a similar new application of the language of the higher
mathematics. Σ, in reality, here indicates that when a certain number of cards have acted in
succession, the prism over which they revolve must rotate backwards, so as to bring those
cards into their former position; and the limits 1 to n, 1 to p, &c., regulate how often this
backward rotation is to be repeated.

A. A. L.

Note F

There is in existence a beautiful woven portrait of Jacquard, in the fabrication of which
24,000 cards were required.



The power of repeating the cards, alluded to by M. Menabrea, and more fully explained in
Note C., reduces to an immense extent the number of cards required. It is obvious that this
mechanical improvement is especially applicable wherever cycles occur in the
mathematical operations, and that, in preparing data for calculations by the engine, it is
desirable to arrange the order and combination of the processes with a view to obtain them
as much as possible symmetrically and in cycles, in order that the mechanical advantages of
the backing system may be applied to the utmost. It is here interesting to observe the
manner in which the value of an analytical resource is met and enhanced by an ingenious
mechanical contrivance. We see in it an instance of one of those mutual adjustments
between the purely mathematical and the mechanical departments, mentioned in Note A. as
being a main and essential condition of success in the invention of a calculating engine.
The nature of the resources afforded by such adjustments would be of two principal kinds.
In some cases, a difficulty (perhaps in itself insurmountable) in the one department would
be overcome by facilities in the other; and sometimes (as in the present case) a strong point
in the one would be rendered still stronger and more available by combination with a
corresponding strong point in the other.

As a mere example of the degree to which the combined systems of cycles and of backing
can diminish the number of cards requisite, we shall choose a case which places it in strong
evidence, and which has likewise the advantage of being a perfectly different kind of
problem from those that are mentioned in any of the other Notes. Suppose it be required to
eliminate nine variables from ten simple equations of the form—

ax0 + bx1 + cx2 + dx3 + ··· = p (1.)

a1x0 + b1x1 + c1x2 + d1x3 + ··· = p' (2.)
&c.        &c.      &c.         &c.  

We should explain, before proceeding, that it is not our object to consider this problem with
reference to the actual arrangement of the data on the Variables of the engine, but simply as
an abstract question of the nature and number of the operations required to be performed
during its complete solution.

The first step would be the elimination of the first unknown quantity x0 between the first
two equations. This would be obtained by the form—

(a1a-aa1)x0 + (a1b-ab1)x1 + (a1c-ac1)x2 +

+ (a1d-ad1)x3 + · · · · · · · · · · · · · · · · · · · · · · · · = a1p-ap1,

for which the operations 10 (×, ×, −) would be needed. The second step would be the
elimination of x0 between the second and third equations, for which the operations would
be precisely the same. We should then have had altogether the following operations:—

10(×, ×, −), 10(×, ×, −) = 20(×, ×, −)

Continuing in the same manner, the total number of operations for the complete elimination
of x0 between all the successive pairs of equations would be—

9 · 10(×, ×, −) = 90(×, ×, −)

We should then be left with nine simple equations of nine variables from which to
eliminate the next variable x1, for which the total of the processes would be

8 · 9(×, ×, −) = 72(×, ×, −)

We should then be left with eight simple equations of eight variables from which to



eliminate x2, for which the processes would be—

7 · 8(×, ×, −) = 56(×, ×, −)

and so on. The total operations for the elimination of all the variables would thus be—

9·10 + 8·9 + 7·8 + 6·7 + 5·6 + 4·5 + 3·4 + 2·3 + 1·2 = 330.

So that three Operation-cards would perform the office of 330 such cards.

If we take n simple equations containing n−1 variables, n being a number unlimited in
magnitude, the case becomes still more obvious, as the same three cards might then take
the place of thousands or millions of cards.

We shall now draw further attention to the fact, already noticed, of its being by no means
necessary that a formula proposed for solution should ever have been actually worked out,
as a condition for enabling the engine to solve it. Provided we know the series of
operations to be gone through, that is sufficient. In the foregoing instance this will be
obvious enough on a slight consideration. And it is a circumstance which deserves
particular notice, since herein may reside a latent value of such an engine almost
incalculable in its possible ultimate results. We already know that there are functions whose
numerical value it is of importance for the purposes both of abstract and of practical
science to ascertain, but whose determination requires processes so lengthy and so
complicated, that, although it is possible to arrive at them through great expenditure of
time, labour and money, it is yet on these accounts practically almost unattainable; and we
can conceive there being some results which it may be absolutely impossible in practice to
attain with any accuracy, and whose precise determination it may prove highly important
for some of the future wants of science, in its manifold, complicated and rapidly-
developing fields of inquiry, to arrive at.

Without, however, stepping into the region of conjecture, we will mention a particular
problem which occurs to us at this moment as being an apt illustration of the use to which
such an engine may be turned for determining that which human brains find it difficult or
impossible to work out unerringly. In the solution of the famous problem of the Three
Bodies, there are, out of about 295 coefficients of lunar perturbations given by M. Clausen
(Astroe. Nachrichten, No. 406) as the result of the calculations by Burg, of two by
Damoiseau, and of one by Burckhardt, fourteen coefficients that differ in the nature of their
algebraic sign; and out of the remainder there are only 101 (or about one-third) that agree
precisely both in signs and in amount. These discordances, which are generally small in
individual magnitude, may arise either from an erroneous determination of the abstract
coefficients in the development of the problem, or from discrepancies in the data deduced
from observation, or from both causes combined. The former is the most ordinary source of
error in astronomical computations, and this the engine would entirely obviate.

We might even invent laws for series or formulæ in an arbitrary manner, and set the engine
to work upon them, and thus deduce numerical results which we might not otherwise have
thought of obtaining; but this would hardly perhaps in any instance be productive of any
great practical utility, or calculated to rank higher than as a philosophical amusement.

A. A. L.

Note G

It is desirable to guard against the possibility of exaggerated ideas that might arise as to the
powers of the Analytical Engine. In considering any new subject, there is frequently a
tendency, first, to overrate what we find to be already interesting or remarkable; and,



secondly, by a sort of natural reaction, to undervalue the true state of the case, when we do
discover that our notions have surpassed those that were really tenable.

The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. It can follow analysis; but it has no power of
anticipating any analytical relations or truths. Its province is to assist us in making
available what we are already acquainted with. This it is calculated to effect primarily and
chiefly of course, through its executive faculties; but it is likely to exert an indirect and
reciprocal influence on science itself in another manner. For, in so distributing and
combining the truths and the formulæ of analysis, that they may become most easily and
rapidly amenable to the mechanical combinations of the engine, the relations and the nature
of many subjects in that science are necessarily thrown into new lights, and more
profoundly investigated. This is a decidedly indirect, and a somewhat speculative,
consequence of such an invention. It is however pretty evident, on general principles, that
in devising for mathematical truths a new form in which to record and throw themselves
out for actual use, views are likely to be induced, which should again react on the more
theoretical phase of the subject. There are in all extensions of human power, or additions to
human knowledge, various collateral influences, besides the main and primary object
attained.

To return to the executive faculties of this engine: the question must arise in every mind,
are they really even able to follow analysis in its whole extent? No reply, entirely
satisfactory to all minds, can be given to this query, excepting the actual existence of the
engine, and actual experience of its practical results. We will however sum up for each
reader's consideration the chief elements with which the engine works:—

1. It performs the four operations of simple arithmetic upon any numbers whatever.
2. By means of certain artifices and arrangements (upon which we cannot enter within

the restricted space which such a publication as the present may admit of), there is no
limit either to the magnitude of the numbers used, or to the number of quantities
(either variables or constants) that may be employed.

3. It can combine these numbers and these quantities either algebraically or
arithmetically, in relations unlimited as to variety, extent, or complexity.

4. It uses algebraic signs according to their proper laws, and developes the logical
consequences of these laws.

5. It can arbitrarily substitute any formula for any other; effacing the first from the
columns on which it is represented, and making the second appear in its stead.

6. It can provide for singular values. Its power of doing this is referred to in M.
Menabrea's memoir, where he mentions the passage of values through zero and
infinity. The practicability of causing it arbitrarily to change its processes at any
moment, on the occurrence of any specified contingency (of which its substitution of 

 for , explained in Note E., is in
some degree an illustration), at once secures this point.

The subject of integration and of differentiation demands some notice. The engine can
effect these processes in either of two ways:—

First. We may order it, by means of the Operation and of the Variable-cards, to go through
the various steps by which the required limit can be worked out for whatever function is
under consideration.

Secondly. It may (if we know the form of the limit for the function in question) effect the
integration or differentiation by direct substitution. We remarked in Note B., that any set of
columns on which numbers are inscribed, represents merely a general function of the
several quantities, until the special function have been impressed by means of the
Operation and Variable-cards. Consequently, if instead of requiring the value of the
function, we require that of its integral, or of its differential coefficient, we have merely to
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order whatever particular combination of the ingredient quantities may constitute that
integral or that coefficient. In axn, for instance, instead of the quantities

being ordered to appear on V3 in the combination axn, they would be ordered to appear in
that of

anxn-1

They would then stand thus:—

Similarly, we might have , the integral of axn.

An interesting example for following out the processes of the engine would be such a form
as

or any other cases of integration by successive reductions, where an integral which
contains an operation repeated n times can be made to depend upon another which contains
the same n-1 or n-2 times, and so on until by continued reduction we arrive at a certain
ultimate form, whose value has then to be determined.

The methods in Arbogast's Calcul des Dérivations are peculiarly fitted for the notation and
the processes of the engine. Likewise the whole of the Combinatorial Analysis, which
consists first in a purely numerical calculation of indices, and secondly in the distribution
and combination of the quantities according to laws prescribed by these indices.

We will terminate these Notes by following up in detail the steps through which the engine
could compute the Numbers of Bernoulli, this being (in the form in which we shall deduce
it) a rather complicated example of its powers. The simplest manner of computing these
numbers would be from the direct expansion of

(1.)

which is in fact a particular case of the development of

mentioned in Note E. Or again, we might compute them from the well-known form



(2.)

or from the form

(3.)

or from many others. As however our object is not simplicity or facility of computation,
but the illustration of the powers of the engine, we prefer selecting the formula below,
marked (8.) This is derived in the following manner:—

If in the equation

(4.)

(in which B1, B3…, &c. are the Numbers of Bernoulli), we expand the denominator of the
first side in powers of x, and then divide both numerator and denominator by x, we shall
derive

(5.)

If this latter multiplication be actually performed, we shall have a series of the general form

(6.)

in which we see, first, that all the coefficients of the powers of x are severally equal to zero;
and secondly, that the general form for D2n, the coefficient of the 2n+1th term (that is of
x2n any even power of x), is the following:—

(7.)

Multiplying every term by (2·3…2n) we have

(8.)

which it may be convenient to write under the general form:—



The diagram of the computation of the Numbers of
Bernoulli is very large and intricate, and cannot be
displayed as an in-line image in this document. If
reduced to fit on a typical computer screen, the text in
the diagram is illegible. The diagram is available at two
different resolutions; the following links will display the
version you select in a separate browser window
(assuming your browser provides this feature), which
will permit you to refer to the diagram, scrolling as

(9.)

A1, A3, &c. being those functions of n which respectively belong to B1, B3, &c.

We might have derived a form nearly similar to (8.), from D2n-1 the coefficient of any odd
power of x in (6.); but the general form is a little different for the coefficients of the odd
powers, and not quite so convenient.

On examining (7.) and (8.), we perceive that, when these formulæ are isolated from (6.),
whence they are derived, and considered in themselves separately and independently, n
may be any whole number whatever; although when (7.) occurs as one of the D's in (6.), it
is obvious that n is then not arbitrary, but is always a certain function of the distance of that
D from the beginning. If that distance be =d, then

It is with the independent formula (8.) that we have to do. Therefore it must be
remembered that the conditions for the value of n are now modified, and that n is a
perfectly arbitrary whole number. This circumstance, combined with the fact (which we
may easily perceive) that whatever n is, every term of (8.) after the (n+1)th is =0, and that
the (n+1)th term itself is always , enables us to find the value
(either numerical or algebraical) of any nth Number of Bernoulli B2n-1, in terms of all the
preceding ones, if we but know the values of B1, B3…B2n-3. We append to this Note a
Diagram and Table, containing the details of the computation for B7 (B1, B3, B5 being
supposed given).

On attentively considering (8.), we shall likewise perceive that we may derive from it the
numerical value of every Number of Bernoulli in succession, from the very beginning, ad
infinitum, by the following series of computations:—

  1st Series.—Let n=1, and calculate (8.) for this value of n. The result is B1.
  2nd Series.—Let n=2. Calculate (8.) for this value of n, substituting the value of B1 just
obtained. The result is B3.
  3rd Series.—Let n=3. Calculate (8.) for this value of n, substituting the values of B1, B3
before obtained. The result is B5. And so on, to any extent.

The diagram represents the columns
of the engine when just prepared for
computing B2n-1 (in the case of n=4);
while the table beneath them presents
a complete simultaneous view of all
the successive changes which these
columns then severally pass through
in order to perform the computation.
(The reader is referred to Note D. for
explanations respecting the nature
and notation of such tables.)

Six numerical data are in this case
necessary for making the requisite
combinations. These data are 1, 2,
n(=4), B1, B3, B5. Were n=5, the
additional datum B7 would be
needed. Were n=6, the datum B9



necessary, while reading the following text. If you have
a PostScript printer, you can download a ready-to-print
PostScript file (in a ZIPped archive), which prints the
diagram on a single page of paper. 

View diagram in new browser window: 

Large image (1560×1008 pixels, 69K)
Monster image (1949×1260 pixels, 100K)

would be needed; and so on. Thus the
actual number of data needed will
always be n+2, for n=n; and out of
these n+2 data,  of them
are successive Numbers of Bernoulli.
The reason why the Bernoulli
Numbers used as data are
nevertheless placed on Result-
columns in the diagram, is because
they may properly be supposed to have been previously computed in succession by the
engine itself; under which circumstances each B will appear as a result, previous to being
used as a datum for computing the succeeding B. Here then is an instance (of the kind
alluded to in Note D.) of the same Variables filling more than one office in turn. It is true
that if we consider our computation of B7 as a perfectly isolated calculation, we may
conclude B1, B3, B5 to have been arbitrarily placed on the columns; and it would then
perhaps be more consistent to put them on V4, V5, V6 as data and not results. But we are
not taking this view. On the contrary, we suppose the engine to be in the course of
computing the Numbers to an indefinite extent, from the very beginning; and that we
merely single out, by way of example, one amongst the successive but distinct series of
computations it is thus performing. Where the B's are fractional, it must be understood that
they are computed and appear in the notation of decimal fractions. Indeed this is a
circumstance that should be noticed with reference to all calculations. In any of the
examples already given in the translation and in the Notes, some of the data, or of the
temporary or permanent results, might be fractional, quite as probably as whole numbers.
But the arrangements are so made, that the nature of the processes would be the same as for
whole numbers.

In the above table and diagram we are not considering the signs of any of the B's, merely
their numerical magnitude. The engine would bring out the sign for each of them correctly
of course, but we cannot enter on every additional detail of this kind as we might wish to
do. The circles for the signs are therefore intentionally left blank in the diagram.

Operation-cards 1, 2, 3, 4, 5, 6 prepare . Thus, Card 1 multiplies two into n, and

the three Receiving Variable-cards belonging respectively to V4, V5, V6, allow the result 2n
to be placed on each of these latter columns (this being a case in which a triple receipt of
the result is needed for subsequent purposes); we see that the upper indices of the two
Variables used, during Operation 1, remain unaltered.

We shall not go through the details of every operation singly, since the table and diagram
sufficiently indicate them; we shall merely notice some few peculiar cases.

By Operation 6, a positive quantity is turned into a negative quantity, by simply subtracting
the quantity from a column which has only zero upon it. (The sign at the top of V8 would
become − during this process.)

Operation 7 will be unintelligible, unless it be remembered that if we were calculating for n
= 1 instead of n = 4, Operation 6 would have completed the computation of B1 itself, in
which case the engine instead of continuing its processes, would have to put B1 on V21;
and then either to stop altogether, or to begin Operations 1, 2…7 all over again for value of
n(=2), in order to enter on the computation of B3; (having however taken care, previous to
this recommencement, to make the number on V3 equal to two, by the addition of unity to
the former n=1 on that column). Now Operation 7 must either bring out a result equal to
zero (if n=1); or a result greater than zero, as in the present case; and the engine follows the
one or the other of the two courses just explained, contingently on the one or the other
result of Operation 7. In order fully to perceive the necessity of this experimental
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operation, it is important to keep in mind what was pointed out, that we are not treating a
perfectly isolated and independent computation, but one out of a series of antecedent and
prospective computations. 

Cards 8, 9, 10 produce . In Operation 9 we see an example of an

upper index which again becomes a value after having passed from preceding values to
zero. V11 has successively been 0V11, 1V11, 2V11, 0V11, 3V11; and, from the nature of the
office which V11 performs in the calculation, its index will continue to go through further
changes of the same description, which, if examined, will be found to be regular and
periodic.

Card 12 has to perform the same office as Card 7 did in the preceding section; since, if n
had been =2, the 11th operation would have completed the computation of B3.

Cards 13 to 20 make A3. Since A2n-1 always consists of 2n-1 factors, A3 has three factors;
and it will be seen that Cards 13, 14, 15, 16 make the second of these factors, and then
multiply it with the first; and that 17, 18, 19, 20 make the third factor, and then multiply
this with the product of the two former factors.

Card 23 has the office of Cards 11 and 7 to perform, since if n were =3, the 21st and 22nd
operations would complete the computation of B5. As our case is B7, the computation will
continue one more stage; and we must now direct attention to the fact, that in order to
compute A7 it is merely necessary precisely to repeat the group of Operations 13 to 20; and
then, in order to complete the computation of B7, to repeat Operations 21, 22.

It will be perceived that every unit added to n in B2n-1, entails an additional repetition of
operations (13…23) for the computation of B2n-1. Not only are all the operations precisely
the same however for every such repetition, but they require to be respectively supplied
with numbers from the very same pairs of columns; with only the one exception of
Operation 21, which will of course need B5 (from V23) instead of B3 (from V22). This
identity in the columns which supply the requisite numbers must not be confounded with
identity in the values those columns have upon them and give out to the mill. Most of those
values undergo alterations during a performance of the operations (13…23), and
consequently the columns present a new set of values for the next performance of (13…23)
to work on.

At the termination of the repetition of operations (13…23) in computing B7, the alterations
in the values on the Variables are, that

V6 = 2n-4 instead of 2n-2.
V7 = 6 . . . . . . . . . . . . . 4.
V10 = 0 . . . . . . . . . . . . . 1.
V13 = A0+A1B1+A3B3+A5B5 instead of A0+A1B1+A3B3.

In this state the only remaining processes are, first, to transfer the value which is on V13 to
V24; and secondly, to reduce V6, V7, V13 to zero, and to add one to V3, in order that the
engine may be ready to commence computing B9. Operations 24 and 25 accomplish these
purposes. It may be thought anomalous that Operation 25 is represented as leaving the
upper index of V3 still=unity; but it must be remembered that these indices always begin
anew for a separate calculation, and that Operation 25 places upon V3 the first value for the
new calculation.

It should be remarked, that when the group (13…23) is repeated, changes occur in some of
the upper indices during the course of the repetition: for example, 3V6 would become 4V6
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and 5V6.

We thus see that when n=1, nine Operation-cards are used; that when n=2, fourteen
Operation-cards are used; and that when n>2, twenty-five Operation-cards are used; but
that no more are needed, however great n may be; and not only this, but that these same
twenty-five cards suffice for the successive computation of all the Numbers from B1 to B2n-
1 inclusive. With respect to the number of Variable-cards, it will be remembered, from the
explanations in previous Notes, that an average of three such cards to each operation (not
however to each Operation-card) is the estimate. According to this, the computation of B1
will require twenty-seven Variable-cards; B3 forty-two such cards; B5 seventy-five; and for
every succeeding B after B5, there would be thirty-three additional Variable-cards (since
each repetition of the group (13…23) adds eleven to the number of operations required for
computing the previous B). But we must now explain, that whenever there is a cycle of
operations, and if these merely require to be supplied with numbers from the same pairs of
columns, and likewise each operation to place its result on the same column for every
repetition of the whole group, the process then admits of a cycle of Variable-cards for
effecting its purposes. There is obviously much more symmetry and simplicity in the
arrangements, when cases do admit of repeating the Variable as well as the Operation-
cards. Our present example is of this nature. The only exception to a perfect identity in all
the processes and columns used, for every repetition of Operations (13…23), is, that
Operation 21 always requires one of its factors from a new column, and Operation 24
always puts its result on a new column. But as these variations follow the same law at each
repetition (Operation 21 always requiring its factor from a column one in advance of that
which it used the previous time, and Operation 24 always putting its result on the column
one in advance of that which received the previous result), they are easily provided for in
arranging the recurring group (or cycle) of Variable-cards.

We may here remark, that the average estimate of three Variable-cards coming into use to
each operation, is not to be taken as an absolutely and literally correct amount for all cases
and circumstances. Many special circumstances, either in the nature of a problem, or in the
arrangements of the engine under certain contingencies, influence and modify this average
to a greater or less extent; but it is a very safe and correct general rule to go upon. In the
preceding case it will give us seventy-five Variable-cards as the total number which will be
necessary for computing any B after B3. This is very nearly the precise amount really used,
but we cannot here enter into the minutiæ of the few particular circumstances which occur
in this example (as indeed at some one stage or other of probably most computations) to
modify slightly this number.

It will be obvious that the very same seventy-five Variable-cards may be repeated for the
computation of every succeeding Number, just on the same principle as admits of the
repetition of the thirty-three Variable-cards of Operations (13…23) in the computation of
any one Number. Thus there will be a cycle of a cycle of Variable-cards.

If we now apply the notation for cycles, as explained in Note E., we may express the
operations for computing the Numbers of Bernoulli in the following manner:—

Again,



 Send Feedback 

represents the total operations for computing every number in succession, from B1 to B2n-1
inclusive.

In this formula we see a varying cycle of the first order, and an ordinary cycle of the second
order. The latter cycle in this case includes in it the varying cycle.

On inspecting the ten Working-Variables of the diagram, it will be perceived, that although
the value on any one of them (excepting V4 and V5) goes through a series of changes, the
office which each performs is in this calculation fixed and invariable. Thus V6 always
prepares the numerators of the factors of any A; V7 the denominators. V8 always receives
the (2n-3)th factor of A2n-1, and V9 the (2n-1)th. V10 always decides which of two courses
the succeeding processes are to follow, by feeling for the value of n through means of a
subtraction; and so on; but we shall not enumerate further. It is desirable in all calculations
so to arrange the processes, that the offices performed by the Variables may be as uniform
and fixed as possible.

Supposing that it was desired not only to tabulate B1, B3, &c., but A0, A1, &c.; we have
only then to appoint another series of Variables, V41, V42, &c., for receiving these latter
results as they are successively produced upon V11. Or again, we may, instead of this, or in
addition to this second series of results, wish to tabulate the value of each successive total
term of the series (8.), viz. A0, A1B1, A3B3, &c. We have then merely to multiply each B
with each corresponding A, as produced, and to place these successive products on Result-
columns appointed for the purpose.

The formula (8.) is interesting in another point of view. It is one particular case of the
general Integral of the following Equation of Mixed Differences:—

for certain special suppositions respecting z, x and n.

The general integral itself is of the form,

and it is worthy of remark, that the engine might (in a manner more or less similar to the
preceding) calculate the value of this formula upon most other hypotheses for the functions
in the integral with as much, or (in many cases) with more ease than it can formula (8.).

A. A. L.
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